skip to main content

Search for: All records

Creators/Authors contains: "Fainman, Yeshaiahu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The quantum theory of optical coherence plays a ubiquitous role in identifying optical emitters. An unequivocal identification, however, presumes that the photon number statistics is resolved from timing uncertainties. We demonstrate from first principle that the observed nth-order temporal coherence is a n-fold convolution of the instrument responses and the expected coherence. The consequence is detrimental in which the photon number statistics is masked from the unresolved coherence signatures. The experimental investigations are thus far consistent with the theory developed. We envision the present theory will mitigate the false identification of optical emitters and enlarge the coherence deconvolution to an arbitrary order.

  2. Integrated third-harmonic generators enable on-chip wavelength conversion translating telecom signals to the visible spectrum. Despite the desirable functionality, the device performance is susceptible to phase distortions. Here, we present a design method of compensating the Kerr-induced distortions in third-harmonic generation. The design method yields a chirped Bragg grating theoretically improving the conversion efficiency by ∼30 dB. We envision the design method will pave the way for demonstrating efficient infrared-to-visible upconversion in silicon nitride chips.

  3. The design, fabrication, and characterization of a 16-element optical phased array (OPA) using a high index (n = 3.1) silicon-rich silicon nitride (SRN) is demonstrated. We present one-dimensional beam steering with end-fire facet antennas over a wide steering range of >115° at a fixed wavelength of 1525 nm. A beam width of 6.3° has been measured at boresight, consistent with theory. We demonstrate SRN as a viable material choice for chip-scale OPA applications due to its high thermo-optic coefficient, high optical power handling capacity [negligible two-photon absorption (TPA)], wide transparency window, and CMOS compatibility.

    Free, publicly-accessible full text available January 31, 2024
  4. We present a study of optical bi-stability in a 3.02 refractive index at 1550nm plasma enhanced chemical vapor deposition (PECVD) silicon-rich nitride (SRN) film, as it pertains to bi-stable switching, memory applications, and thermal sensing applications. In this work we utilize an SRN ring resonator device, which we first characterize at low-power and then compare thermo-optic coefficients, (2.12 ± 0.125) × 10−4/°C, obtained from thermal-heating induced resonance shifts to optically induced resonance shifts as well as estimated propagation loss and absorption. We then measure the time response of this nonlinearity demonstrating the relaxation time to be 18.7 us, indicating the mechanism to be thermal in nature. Finally, we demonstrate bi-stable optical switching.

  5. Abstract The proliferation of Internet-of-Things has promoted a wide variety of emerging applications that require compact, lightweight, and low-cost optical spectrometers. While substantial progresses have been made in the miniaturization of spectrometers, most of them are with a major focus on the technical side but tend to feature a lower technology readiness level for manufacturability. More importantly, in spite of the advancement in miniaturized spectrometers, their performance and the metrics of real-life applications have seldomly been connected but are highly important. This review paper shows the market trend for chip-scale spectrometers and analyzes the key metrics that are required to adopt miniaturized spectrometers in real-life applications. Recent progress addressing the challenges of miniaturization of spectrometers is summarized, paying a special attention to the CMOS-compatible fabrication platform that shows a clear pathway to massive production. Insights for ways forward are also presented.
    Free, publicly-accessible full text available December 1, 2023
  6. There is little literature characterizing the temperature-dependent thermo-optic coefficient (TOC) for low pressure chemical vapor deposition (LPCVD) silicon nitride or plasma enhanced chemical vapor deposition (PECVD) silicon dioxide at temperatures above 300 K. In this study, we characterize these material TOC’s from approximately 300-460 K, yielding values of (2.51 ± 0.08) · 10−5K−1for silicon nitride and (5.67 ± 0.53) · 10−6K−1for silicon oxide at room temperature (300 K). We use a simplified experimental setup and apply an analytical technique to account for thermal expansion during the extraction process. We also show that the waveguide geometry and method used to determine the resonant wavelength have a substantial impact on the precision of our results, a fact which can be used to improve the precision of numerous ring resonator index sensing experiments.

  7. Free, publicly-accessible full text available July 1, 2023
  8. Bragg-grating based cavities and coupler designs present opportunities for flexible allocation of bandwidth and spectrum in silicon photonic devices. Integrated silicon photonic devices are moving toward mainstream, mass adoption, leading to the need for compact Bragg grating based designs. In this work we present a design and experimental validation of a cascaded contra-directional Bragg-grating coupler with a measured main lobe to side-lobe contrast of 12.93 dB. This level of performance is achieved in a more compact size as compared to conventional apodized gratings, and a similar design philosophy can be used to improve side-lobe reduction in grating-based mirror design for on-chip lasers and other cavity-based designs as well.
  9. 3D imaging is essential for the study and analysis of a wide variety of structures in numerous applications. Coherent photonic systems such as optical coherence tomography (OCT) and light detection and ranging (LiDAR) are state-of-the-art approaches, and their current implementation can operate in regimes that range from under a few millimeters to over more than a kilometer. We introduce a general method, which we call universal photonics tomography (UPT), for analyzing coherent tomography systems, in which conventional methods such as OCT and LiDAR may be viewed as special cases. We demonstrate a novel approach (to our knowledge) based on the use of phase modulation combined with multirate signal processing to collect positional information of objects beyond the Nyquist limits.