skip to main content


Search for: All records

Creators/Authors contains: "Fainman, Yeshaiahu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Nanophotonics allows to employ light-matter interaction to induce nonlinear optical effects and realize non-conventional memory and computation capabilities, however to date, light-liquid interaction was not considered as a potential mechanism to achieve computation on a nanoscale. Here, we experimentally demonstrate self-induced phase change effect which relies on the coupling between geometric changes of thin liquid film to optical properties of photonic waveguide modes, and then employ it for neuromorphic computing. In our optofluidic silicon photonics system we utilize thermocapillary-based deformation of thin liquid film capable to induce nonlinear effect which is more than one order of magnitude higher compared to the more traditional heat-based thermo-optical effect, and allowing operation as a nonlinear actuator and memory element, both residing at the same compact spatial region. The resulting dynamics allows to implement Reservoir Computing at spatial region which is approximately five orders of magnitude smaller compared to state-of-the-art experimental liquid-based systems. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Free, publicly-accessible full text available October 1, 2024
  3. This study proposes a novel technique for a 2D beam steering system using hybrid plasmonic phase shifters with a cylindrical configuration in a 2D periodic array suitable for LIDAR applications. A nanoscale VCSEP design facilitates a sub-wavelength spacing between individual phase shifters, yielding an expanded field of view and side lobes suppression. The proposed design includes a highly doped sub-micron silicon pillar covered by a thin layer of nonlinear material and an additional conductive metal layer. Characterization of a single VCSEP demonstrated a Free Spectral Range (FSR) of 53.28 ± 2.5 nm and a transmission variation of 3 dB, with VπL equal to 0.075 V-mm.

     
    more » « less
    Free, publicly-accessible full text available September 25, 2024
  4. The quantum theory of optical coherence plays a ubiquitous role in identifying optical emitters. An unequivocal identification, however, presumes that the photon number statistics is resolved from timing uncertainties. We demonstrate from first principle that the observed nth-order temporal coherence is a n-fold convolution of the instrument responses and the expected coherence. The consequence is detrimental in which the photon number statistics is masked from the unresolved coherence signatures. The experimental investigations are thus far consistent with the theory developed. We envision the present theory will mitigate the false identification of optical emitters and enlarge the coherence deconvolution to an arbitrary order.

     
    more » « less
  5. Integrated third-harmonic generators enable on-chip wavelength conversion translating telecom signals to the visible spectrum. Despite the desirable functionality, the device performance is susceptible to phase distortions. Here, we present a design method of compensating the Kerr-induced distortions in third-harmonic generation. The design method yields a chirped Bragg grating theoretically improving the conversion efficiency by ∼30 dB. We envision the design method will pave the way for demonstrating efficient infrared-to-visible upconversion in silicon nitride chips.

     
    more » « less
  6. We present a study of optical bi-stability in a 3.02 refractive index at 1550nm plasma enhanced chemical vapor deposition (PECVD) silicon-rich nitride (SRN) film, as it pertains to bi-stable switching, memory applications, and thermal sensing applications. In this work we utilize an SRN ring resonator device, which we first characterize at low-power and then compare thermo-optic coefficients, (2.12 ± 0.125) × 10−4/°C, obtained from thermal-heating induced resonance shifts to optically induced resonance shifts as well as estimated propagation loss and absorption. We then measure the time response of this nonlinearity demonstrating the relaxation time to be 18.7 us, indicating the mechanism to be thermal in nature. Finally, we demonstrate bi-stable optical switching.

     
    more » « less
  7. The design, fabrication, and characterization of a 16-element optical phased array (OPA) using a high index (n = 3.1) silicon-rich silicon nitride (SRN) is demonstrated. We present one-dimensional beam steering with end-fire facet antennas over a wide steering range of >115° at a fixed wavelength of 1525 nm. A beam width of 6.3° has been measured at boresight, consistent with theory. We demonstrate SRN as a viable material choice for chip-scale OPA applications due to its high thermo-optic coefficient, high optical power handling capacity [negligible two-photon absorption (TPA)], wide transparency window, and CMOS compatibility.

     
    more » « less
  8. Abstract The proliferation of Internet-of-Things has promoted a wide variety of emerging applications that require compact, lightweight, and low-cost optical spectrometers. While substantial progresses have been made in the miniaturization of spectrometers, most of them are with a major focus on the technical side but tend to feature a lower technology readiness level for manufacturability. More importantly, in spite of the advancement in miniaturized spectrometers, their performance and the metrics of real-life applications have seldomly been connected but are highly important. This review paper shows the market trend for chip-scale spectrometers and analyzes the key metrics that are required to adopt miniaturized spectrometers in real-life applications. Recent progress addressing the challenges of miniaturization of spectrometers is summarized, paying a special attention to the CMOS-compatible fabrication platform that shows a clear pathway to massive production. Insights for ways forward are also presented. 
    more » « less