skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hinder, Oliver"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 1, 2025
  2. Free, publicly-accessible full text available September 18, 2025
  3. Free, publicly-accessible full text available September 24, 2025
  4. Nanophotonic structures have versatile applications including solar cells, antireflective coatings, electromagnetic interference shielding, optical filters, and light emitting diodes. To design and understand these nanophotonic structures, electrodynamic simulations are essential. These simulations enable us to model electromagnetic fields over time and calculate optical properties. In this work, we introduce frameworks and benchmarks to evaluate nanophotonic structures in the context of parametric structure design problems. The benchmarks are instrumental in assessing the performance of optimization algorithms and identifying an optimal structure based on target optical properties. Moreover, we explore the impact of varying grid sizes in electrodynamic simulations, shedding light on how evaluation fidelity can be strategically leveraged in enhancing structure designs. 
    more » « less
  5. The design of optical devices is a complex and time-consuming process. To simplify this process, we present a novel framework of multi-fidelity multi-objective Bayesian optimization with warm starts, called Multi-BOWS. This approach automatically discovers new nanophotonic structures by managing multiple competing objectives and utilizing multi-fidelity evaluations during the design process. We employ our Multi-BOWS method to design an optical device specifically for transparent electromagnetic shielding, a challenge that demands balancing visible light transparency and effective protection against electromagnetic waves. Our approach leverages the understanding that simulations with a coarser mesh grid are faster, albeit less accurate than those using a denser mesh grid. Unlike the earlier multi-fidelity multi-objective method, Multi-BOWS begins with faster, less accurate evaluations, which we refer to as “warm-starting,” before shifting to a dense mesh grid to increase accuracy. As a result, Multi-BOWS demonstrates 3.2–89.9% larger normalized area under the Pareto frontier, which measures a balance between transparency and shielding effectiveness, than low-fidelity only and high-fidelity only techniques for the nanophotonic structures studied in this work. Moreover, our method outperforms an existing multi-fidelity method by obtaining 0.5–10.3% larger normalized area under the Pareto frontier for the structures of interest. 
    more » « less
  6. We propose a tuning-free dynamic SGD step size formula, which we call Distance over Gradients (DoG). The DoG step sizes depend on simple empirical quantities (distance from the initial point and norms of gradients) and have no “learning rate” parameter. Theoretically, we show that, for stochastic convex optimization, a slight variation of the DoG formula enjoys strong, high-probability parameter-free convergence guarantees and iterate movement bounds. Empirically, we consider a broad range of vision and language transfer learning tasks, and show that DoG’s performance is close to that of SGD with tuned learning rate. We also propose a per-layer variant of DoG that generally outperforms tuned SGD, approaching the performance of tuned Adam. A PyTorch implementation of our algorithms is available at https://github.com/formll/dog. 
    more » « less
  7. null (Ed.)
  8. Abernethy, Jacob D.; Agarwal, Shivani (Ed.)