Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Using the FIRE-2 cosmological zoom-in simulations, we investigate the temporal evolution of gas-phase metallicity radial gradients of Milky Way–mass progenitors in the redshift range of 0.4 <z< 3. We pay special attention to the occurrence of positive (i.e., inverted) metallicity gradients—where metallicity increases with galactocentric radius. This trend, contrary to the more commonly observed negative radial gradients, has been frequently seen in recent spatially resolved grism observations. The rate of occurrence of positive gradients in FIRE-2 is about ∼7% for 0.4 <z< 3 and ∼13% at higher redshifts (1.5 <z< 3), broadly consistent with observations. Moreover, we investigate the correlations among galaxy metallicity gradient, stellar mass, star formation rate (SFR), and degree of rotational support. Metallicity gradients show a strong correlation with both sSFR and the rotational-to-dispersion velocity ratio (vc/σ), implying that starbursts and kinematic morphology of galaxies play significant roles in shaping these gradients. The FIRE-2 simulations indicate that galaxies with high sSFR ( ) and weak rotational support (vc/σ≲ 1) are more likely—by ∼15%—to develop positive metallicity gradients. This trend is attributed to galaxy-scale gas flows driven by stellar feedback, which effectively redistribute metals within the interstellar medium. Our results support the important role of stellar feedback in governing the chemo-structural evolution and disk formation of Milky Way–mass galaxies at the cosmic noon epoch.more » « lessFree, publicly-accessible full text available June 17, 2026
-
Abstract ΛCDM cosmology predicts the hierarchical formation of galaxies, which build up mass by merger events and accreting smaller systems. The stellar halo of the Milky Way (MW) has proven to be useful a tool for tracing this accretion history. However, most of this work has focused on the outer halo where dynamical times are large and the dynamical properties of accreted systems are preserved. In this work, we investigate the inner galaxy regime, where dynamical times are relatively small and systems are generally completely phase mixed. Using the FIRE-2 and Auriga cosmological zoom-in simulation suites of MW-mass galaxies, we find the stellar density profiles along the minor axis (perpendicular to the galactic disk) within the Navarro–Frenk–White scale radii (R ≈ 15 kpc) are best described as an exponential disk with scale height < 0.3 kpc and a power-law component with slopeα ≈ −4. The stellar density amplitude and slope for the power-law component are not significantly correlated with metrics of the galaxy’s accretion history. Instead, we find the stellar profiles strongly correlate with the dark matter profile. Across simulation suites, the galaxies studied in this work have a stellar-to-dark-matter mass ratio that decreases as 1/r2along the minor axis.more » « lessFree, publicly-accessible full text available March 21, 2026
-
Context.The detection of supermassive black holes (SMBHs) in high-redshift luminous quasars may require a phase of rapid accretion, and as a precondition, substantial gas influx toward seed black holes (BHs) from kiloparsec or parsec scales. Our previous research demonstrated the plausibility of such gas supply for BH seeds within star-forming giant molecular clouds (GMCs) with high surface density (∼104 M⊙ pc−2), facilitating “hyper-Eddington” accretion via efficient feeding by dense clumps, which are driven by turbulence and stellar feedback. Aims.This article presents an investigation of the impacts of feedback from accreting BHs on this process, including radiation, mechanical jets, and highly relativistic cosmic rays. Methods.We ran a suite of numerical simulations to explore diverse parameter spaces of BH feedback, including the subgrid accretion model, feedback energy efficiency, mass loading factor, and initial metallicity. Results.Using radiative feedback models inferred from the slim disk, we find that hyper-Eddington accretion is still achievable, yielding BH bolometric luminosities of as high as 1041 − 1044 erg/s, depending on the GMC properties and specific feedback model assumed. We find that the maximum possible mass growth of seed BHs (ΔMmaxBH) is regulated by the momentum-deposition rate from BH feedback,ṗfeedback/(ṀBHc), which leads to an analytic scaling that agrees well with simulations. This scenario predicts the rapid formation of ∼104M⊙intermediate-massive BHs (IMBHs) from stellar-mass BHs within ∼1 Myr. Furthermore, we examine the impacts of subgrid accretion models and how BH feedback may influence star formation within these cloud complexes.more » « less
-
Abstract We utilize the cosmological volume simulation FIREbox to investigate how a galaxy’s environment influences its size and dark matter content. Our study focuses on approximately 1200 galaxies (886 central and 332 satellite halos) in the low-mass regime, with stellar masses between 106and 109M⊙. We analyze the size–mass relation (r50–M⋆), the inner dark matter mass–stellar mass ( –M⋆) relation, and the halo mass–stellar mass (Mhalo–M⋆) relation. At fixed stellar mass, we find that galaxies experiencing stronger tidal influences, indicated by higher Perturbation Indices (PI > 1) are generally larger and have lower halo masses relative to their counterparts with lower Perturbation Indices (PI < 1). Applying a Random Forest regression model, we show that both the environment (PI) and halo mass (Mhalo) are significant predictors of a galaxy’s relative size and dark matter content. Notably, becauseMhalois also strongly affected by the environment, our findings indicate that environmental conditions not only influence galactic sizes and relative inner dark matter content directly, but also indirectly, through their impact on halo mass. Our results highlight a critical interplay between environmental factors and halo mass in shaping galaxy properties, affirming the environment as a fundamental driver in galaxy formation and evolution.more » « lessFree, publicly-accessible full text available April 10, 2026
-
Abstract We present the first suite of cosmological hydrodynamical zoom-in simulations of isolated dwarf galaxies for a dark sector that consists of cold dark matter and a strongly dissipative subcomponent. The simulations are implemented in GIZMO and include standard baryons following the FIRE-2 galaxy formation physics model. The dissipative dark matter is modeled as atomic dark matter (aDM), which forms a dark hydrogen gas that cools in direct analogy to the Standard Model. Our suite includes seven different simulations of ∼1010M⊙systems that vary over the aDM microphysics and the dwarf’s evolutionary history. We identify a region of aDM parameter space where the cooling rate is aggressive and the resulting halo density profile is universal. In this regime, the aDM gas cools rapidly at high redshifts, and only a small fraction survives in the form of a central dark gas disk; the majority collapses centrally into collisionless dark “clumps,” which are clusters of subresolution dark compact objects. These dark clumps rapidly equilibrate in the inner galaxy, resulting in an approximately isothermal distribution that can be modeled with a simple fitting function. Even when only a small fraction (∼5%) of the total dark matter is strongly dissipative, the central densities of classical dwarf galaxies can be enhanced by over an order of magnitude, providing a sharp prediction for observations.more » « lessFree, publicly-accessible full text available March 27, 2026
-
Abstract The physical mechanisms responsible for bar formation and destruction in galaxies remain a subject of debate. While we have gained valuable insight into how bars form and evolve from isolated idealized simulations, in the cosmological domain, galactic bars evolve in complex environments, with mergers and gas accretion events occurring in the presence of the turbulent interstellar medium with multiple star formation episodes, in addition to coupling with their host galaxies’ dark matter halos. We investigate the bar formation in 13 Milky Way–mass galaxies from the Feedback in Realistic Environments (FIRE-2) cosmological zoom-in simulations. 8 of the 13 simulated galaxies form bars at some point during their history: three from tidal interactions and five from internal evolution of the disk. The bars in FIRE-2 are generally shorter than the corotation radius (mean bar radius ∼1.53 kpc), have a wide range of pattern speeds (36–97 km s−1kpc−1), and live for a wide range of dynamical times (2–160 bar rotations). We find that the bar formation in FIRE-2 galaxies is influenced by satellite interactions and the stellar-to-dark-matter mass ratio in the inner galaxy, but neither is a sufficient condition for bar formation. Bar formation is more likely to occur, with the bars formed being stronger and longer-lived, if the disks are kinematically cold; galaxies with high central gas fractions and/or vigorous star formation, on the other hand, tend to form weaker bars. In the case of the FIRE-2 galaxies, these properties combine to produce ellipsoidal bars with strengthsA2/A0∼ 0.1–0.2.more » « lessFree, publicly-accessible full text available December 24, 2025
-
Abstract Stellar feedback influences the star formation rate (SFR) and the interstellar medium of galaxies in ways that are difficult to quantify numerically, because feedback is an essential ingredient of realistic simulations. To overcome this, we conduct a feedback-halting experiment starting with a Milky Way–mass galaxy in the second-generation Feedback In Realistic Environments (FIRE-2) simulation framework. By terminating feedback, and comparing to a simulation in which feedback is maintained, we monitor how the runs diverge. We find that without feedback, the interstellar turbulent velocities decay. There is a marked increase of dense material, while the SFR increases by over an order of magnitude. Importantly, this SFR boost is a factor of ∼15–20 larger than is accounted for by the increased freefall rate caused by higher densities. This implies that feedback moderates the star formation efficiency per freefall time more directly than simply through the density distribution. To probe changes at the scale of giant molecular clouds (GMCs), we identify GMCs using density and virial parameter thresholds, tracking clouds as the galaxy evolves. Halting feedback stimulates rapid changes, including a proliferation of new bound clouds, a decrease of turbulent support in loosely bound clouds, an overall increase in cloud densities, and a surge of internal star formation. Computing the cloud-integrated SFR using several theories of turbulence regulation, we show that these theories underpredict the surge in SFR by at least a factor of 3. We conclude that galactic star formation is essentially feedback regulated on scales that include GMCs, and that stellar feedback affects GMCs in multiple ways.more » « less
-
Abstract Feedback from supermassive black holes is believed to be a critical driver of the observed color bimodality of galaxies above the Milky Way mass scale. Active galactic nuclei (AGN) feedback has been modeled in many galaxy formation simulations, but most implementations have involved simplified prescriptions or a coarse-grained interstellar medium (ISM). We present the first set of Feedback In Realistic Environments (FIRE)-3 cosmological zoom-in simulations with AGN feedback evolved toz∼ 0, examining the impact of AGN feedback on a set of galaxies with halos in the mass range 1012–1013M⊙. These simulations combine detailed stellar and ISM physics with multichannel AGN feedback including radiative feedback, mechanical outflows, and, in some simulations, cosmic rays (CRs). We find that massive (>L*) galaxies in these simulations can match local scaling relations including the stellar mass–halo mass relation and theMBH–σrelation; in the stronger model with CRs, they also match the size–mass relation and the Faber–Jackson relation. Many of the massive galaxies in the simulations with AGN feedback have quenched star formation and elliptical morphologies, in qualitative agreement with observations. In contrast, simulations at the massive end without AGN feedback produce galaxies that are too massive and form stars too rapidly, are order-of-magnitude too compact, and have velocity dispersions well above Faber–Jackson. Despite these successes, the AGN models analyzed do not produce uniformly realistic galaxies when the feedback parameters are held constant: While the stronger model produces the most realistic massive galaxies, it tends to overquench the lower-mass galaxies. This indicates that further refinements of the AGN modeling are needed.more » « less
-
Recent radiation-thermochemical-magnetohydrodynamic simulations resolved formation of quasar accretion disks from cosmological scales down to ~300 gravitational radii , arguing they were ‘hyper-magnetized’ (plasma supported by toroidal magnetic fields) and distinct from traditional -disks. We extend these, refining to around a BH with multi-channel radiation and thermochemistry, and exploring a factor of 1000 range of accretion rates ( ). At smaller scales, we see the disks maintain steady accretion, thermalize and self-ionize, and radiation pressure grows in importance, but large deviations from local thermodynamic equilibrium and single-phase equations of state are always present. Trans-Alfvenic and highly-supersonic turbulence persists in all cases, and leads to efficient vertical mixing, so radiation pressure saturates at levels comparable to fluctuating magnetic and turbulent pressures even for . The disks also become radiatively inefficient in the inner regions at high . The midplane magnetic field remains primarily toroidal at large radii, but at super-Eddington we see occasional transitions to a poloidal-field dominated state associated with outflows and flares. Large-scale magnetocentrifugal and continuum radiation-pressure-driven outflows are weak at , but can be strong at . In all cases there is a scattering photosphere above the disk extending to at large , and the disk is thick and flared owing to magnetic support (with nearly independent of ), so the outer disk is strongly illuminated by the inner disk and most of the inner disk continuum scatters or is reprocessed at larger scales, giving apparent emission region sizes as large as .more » « lessFree, publicly-accessible full text available January 1, 2026
-
Abstract We analyze the first cosmological baryonic zoom-in simulations of galaxies in dissipative self-interacting dark matter (dSIDM). The simulations utilize the FIRE-2 galaxy formation physics with the inclusion of dissipative dark matter self-interactions modeled as a constant fractional energy dissipation (fdiss= 0.75). In this paper, we examine the properties of dwarf galaxies withM*∼ 105–109M⊙in both isolation and within Milky Way–mass hosts. For isolated dwarfs, we find more compact galaxy sizes and promotion of disk formation in dSIDM with (σ/m) ≤ 1 cm2g−1. On the contrary, models with (σ/m) = 10 cm2g−1produce puffier stellar distributions that are in tension with the observed size–mass relation. In addition, owing to the steeper central density profiles, the subkiloparsec circular velocities of isolated dwarfs when (σ/m) ≥ 0.1 cm2g−1are enhanced by about a factor of 2, which are still consistent with the kinematic measurements of Local Group dwarfs but in tension with the Hirotation curves of more massive field dwarfs. Meanwhile, for satellites of Milky Way–mass hosts, the median circular velocity profiles are marginally affected by dSIDM physics, but dSIDM may help promote the structural diversity of dwarf satellites. The number of satellites is slightly enhanced in dSIDM, but the differences are small compared with the large host-to-host variations. In conclusion, the dSIDM models with (σ/m) ≳ 0.1 cm2g−1,fdiss= 0.75 are in tension in massive dwarfs (Mhalo∼ 1011M⊙) due to circular velocity constraints. However, models with lower effective cross sections (at this halo mass/velocity scale) are still viable and can produce nontrivial observable signatures.more » « less
An official website of the United States government
