skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kelner, Jonathan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. t is well-known that the statistical performance of Lasso can suffer significantly when the covariates of interest have strong correlations. In particular, the prediction error of Lasso becomes much worse than computationally inefficient alternatives like Best Subset Selection. Due to a large conjectured computational-statistical tradeoff in the problem of sparse linear regression, it may be impossible to close this gap in general. In this work, we propose a natural sparse linear regression setting where strong correlations between covariates arise from unobserved latent variables. In this setting, we analyze the problem caused by strong correlations and design a surprisingly simple fix. While Lasso with standard normalization of covariates fails, there exists a heterogeneous scaling of the covariates with which Lasso will suddenly obtain strong provable guarantees for estimation. Moreover, we design a simple, efficient procedure for computing such a "smart scaling." The sample complexity of the resulting "rescaled Lasso" algorithm incurs (in the worst case) quadratic dependence on the sparsity of the underlying signal. While this dependence is not information-theoretically necessary, we give evidence that it is optimal among the class of polynomial-time algorithms, via the method of low-degree polynomials. This argument reveals a new connection between sparse linear regression and a special version of sparse PCA with a near-critical negative spike. The latter problem can be thought of as a real-valued analogue of learning a sparse parity. Using it, we also establish the first computational-statistical gap for the closely related problem of learning a Gaussian Graphical Model. 
    more » « less
    Free, publicly-accessible full text available February 26, 2026
  2. Free, publicly-accessible full text available December 1, 2025
  3. We consider the well-studied problem of completing a rank- , -incoherent matrix from incomplete observations. We focus on this problem in the semi-random setting where each entry is independently revealed with probability at least . Whereas multiple nearly-linear time algorithms have been established in the more specialized fully-random setting where each entry is revealed with probablity exactly , the only known nearly-linear time algorithm in the semi-random setting is due to [CG18], whose sample complexity has a polynomial dependence on the inverse accuracy and condition number and thus cannot achieve high-accuracy recovery. Our main result is the first high-accuracy nearly-linear time algorithm for solving semi-random matrix completion, and an extension to the noisy observation setting. Our result builds upon the recent short-flat decomposition framework of [KLLST23a, KLLST23b] and leverages fast algorithms for flow problems on graphs to solve adaptive reweighting subproblems efficiently 
    more » « less
    Free, publicly-accessible full text available November 6, 2025