skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 10:00 PM ET on Friday, December 8 until 2:00 AM ET on Saturday, December 9 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Liao, Hao-yu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 1, 2024
  2. Robotic technology can benefit disassembly operations by reducing human operators’ workload and assisting them with handling hazardous materials. Safety consideration and predicting human movement is a priority in human-robot close collaboration. The point-by-point forecasting of human hand motion which forecasts one point at each time does not provide enough information on human movement due to errors between the actual movement and predicted value. This study provides a range of possible hand movements to enhance safety. It applies three machine learning techniques including Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and Bayesian Neural Network (BNN) combined with Bagging and Monte Carlo Dropout (MCD), namely LSTM-Bagging, GRU-Bagging, and BNN-MCD to predict the possible movement range. The study uses an Inertial Measurement Units (IMU) dataset collected from the disassembly of desktop computers to show the application of the proposed method. The findings reveal that BNN-MCD outperforms other models in forecasting the range of possible hand movement. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  3. Abstract Disassembly is an essential step for remanufacturing end-of-life (EOL) products. Optimization of disassembly sequences and the utilization of robotic technology could alleviate the labor-intensive nature of dismantling operations. This study proposes an optimization framework for disassembly sequence planning under uncertainty considering human–robot collaboration. The proposed framework combines three attributes: disassembly cost, safety, and complexity of disassembly, namely disassembleability, to identify the optimal disassembly path and allocate operations between human and robot. A multi-attribute utility function is used to address uncertainty and make a tradeoff among multiple attributes. The disassembly time reflects the cost of disassembly which is assumed to be an uncertain parameter with a Beta distribution; the disassembleability evaluates the feasibility of conducting operations by robot; finally, the safety index ensures the protection of human workers in the work environment. An example of dismantling a desktop computer is used to show the application. The model identifies the optimal disassembly sequence with less disassembly cost, high disassembleability, and increased safety index while allocating disassembly operations among human and robot. A sensitivity analysis is conducted to show the model's performance when changing the disassembly cost for the robot. 
    more » « less
    Free, publicly-accessible full text available February 1, 2024
  4. Disassembly is an integral part of maintenance, upgrade, and remanufacturing operations to recover end-of-use products. Optimization of disassembly sequences and the capability of robotic technology are crucial for managing the resource-intensive nature of dismantling operations. This study proposes an optimization framework for disassembly sequence planning under uncertainty considering human-robot collaboration. The proposed model combines three attributes: disassembly cost, disassembleability, and safety, to find the optimal path for dismantling a product and assigning each disassembly operation among humans and robots. The multi-attribute utility function has been employed to address uncertainty and make a tradeoff among multiple attributes. The disassembly time reflects the cost of disassembly and is assumed to be an uncertain parameter with a Beta probability density function; the disassembleability evaluates the feasibility of conducting operations by robot; finally, the safety index ensures the safety of human workers in the work environment. The optimization model identifies the best disassembly sequence and makes tradeoffs among multi-attributes. An example of a computer desktop illustrates how the proposed model works. The model identifies the optimal disassembly sequence with less disassembly cost, high disassembleability, and increased safety index while allocating disassembly operations between human and robot. A sensitivity analysis is conducted to show the model's performance when changing the disassembly cost for the robot. 
    more » « less
  5. Products often experience different failure and repair needs during their lifespan. Prediction of the type of failure is crucial to the maintenance team for various reasons, such as realizing the device performance, creating standard strategies for repair, and analyzing the trade-off between cost and profit of repair. This study aims to apply machine learning tools to forecast failure types of medical devices and help the maintenance team properly decides on repair strategies based on a limited dataset. Two types of medical devices are used as the case study. The main challenge resides in using the limited attributes of the dataset to forecast product failure type. First, a multilayer perceptron (MLP) algorithm is used as a regression model to forecast three attributes, including the time of next failure, repair time, and repair time z-scores. Then, eight classification models, including Naïve Bayes with Bernoulli (NB-Bernoulli), Gaussian (NB-Gaussian), Multinomial (NB-Multinomial) model, Support Vector Machine with linear (SVM-Linear), polynomial (SVM-Poly), sigmoid (SVM-Sigmoid), and radical basis (SVM-RBF) function, and K-Nearest Neighbors (KNN) are used to forecast the failure type. Finally, Gaussian Mixture Model (GMM) is used to identify maintenance conditions for each product. The results reveal that the classification models could forecast failure type with similar performance, although the attributes of the dataset were limited. 
    more » « less
  6. Accurate prediction of product failures and the need for repair services become critical for various reasons, including understanding the warranty performance of manufacturers, defining cost-efficient repair strategies, and compliance with safety standards. The purpose of this study is to use machine learning tools to analyze several parameters crucial for achieving a robust repair service system, including the number of repairs, the time of the next repair ticket or product failure, and the time to repair. A large dataset of over 530,000 repairs and maintenance of medical devices has been investigated by employing the Support Vector Machine (SVM) tool. SVM with four kernel functions is used to forecast the timing of the next failure or repair request in the system for two different products and two different failure types, namely random failure and physical damage. A frequency analysis is also conducted to explore the product quality level based on product failure and the time to repair it. Besides, the best probability distributions are fitted for the number of failures, the time between failures, and the time to repair. The results reveal the value of data analytics and machine learning tools in analyzing post-market product performance and the cost of repair and maintenance operations. 
    more » « less
  7. Abstract

    Remanufacturing sites often receive products with different brands, models, conditions, and quality levels. Proper sorting and classification of the waste stream is a primary step in efficiently recovering and handling used products. The correct classification is particularly crucial in future electronic waste (e-waste) management sites equipped with Artificial Intelligence (AI) and robotic technologies. Robots should be enabled with proper algorithms to recognize and classify products with different features and prepare them for assembly and disassembly tasks. In this study, two categories of Machine Learning (ML) and Deep Learning (DL) techniques are used to classify consumer electronics. ML models include Naïve Bayes with Bernoulli, Gaussian, Multinomial distributions, and Support Vector Machine (SVM) algorithms with four kernels of Linear, Radial Basis Function (RBF), Polynomial, and Sigmoid. While DL models include VGG-16, GoogLeNet, Inception-v3, Inception-v4, and ResNet-50. The above-mentioned models are used to classify three laptop brands, including Apple, HP, and ThinkPad. First the Edge Histogram Descriptor (EHD) and Scale Invariant Feature Transform (SIFT) are used to extract features as inputs to ML models for classification. DL models use laptop images without pre-processing on feature extraction. The trained models are slightly overfitting due to the limited dataset and complexity of model parameters. Despite slight overfitting, the models can identify each brand. The findings prove that DL models outperform them of ML. Among DL models, GoogLeNet has the highest performance in identifying the laptop brands.

     
    more » « less
  8. Abstract Accurate prediction of product failures and the need for repair services become critical for various reasons, including understanding the warranty performance of manufacturers, defining cost-efficient repair strategies, and compliance with safety standards. The purpose of this study is to use machine learning tools to analyze several parameters crucial for achieving a robust repair service system, including the number of repairs, the time of the next repair ticket or product failure, and the time to repair. A large data set of over 530,000 repairs and maintenance of medical devices has been investigated by employing the Support Vector Machine (SVM) tool. SVM with four kernel functions is used to forecast the timing of the next failure or repair request in the system for two different products and two different failure types, namely, random failure and physical damage. Frequency analysis is also conducted to explore the product quality level based on product failure and the time to repair it. Besides, the best probability distributions are fitted for the failure count, the time between failures, and the time to repair. The results reveal the value of data analytics and machine learning tools in analyzing post-market product performance and the cost of repair and maintenance operations. 
    more » « less