skip to main content


Search for: All records

Creators/Authors contains: "Manna, Arnab"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The wave nature of light sets a fundamental diffraction limit that challenges confinement and control of light in nanoscale structures with dimensions significantly smaller than the wavelength. Here, we study light–matter interaction in van der Waals MoS2nanophotonic devices. We show that light can be coupled and guided in structures with dimensions as small as ≃λ/16 (∼60nm at 1000 nm excitation wavelength), while offering unprecedented optical field confinement. This deep subwavelength optical field confinement is achieved by exploiting strong lightwave dispersion in MoS2. We further study the performance of a range of nanophotonic integrated devices via far- and near-field measurements. Our near-field measurements reveal detailed imaging of excitation, evolution, and guidance of fields in nanostructured MoS2, whereas our far-field study examines light excitation and coupling to highly confined integrated photonics. Nanophotonics at a fraction of a wavelength demonstrated here could dramatically reduce the size of integrated photonic devices and opto-electronic circuits with potential applications in optical information science and engineering.

     
    more » « less
  2. Free, publicly-accessible full text available July 1, 2024
  3. The combination of photonic integrated circuits and free-space metaoptics has the ability to untie technological knots that require advanced light manipulation due to their conjoined ability to achieve strong light–matter interaction via wave-guiding light over a long distance and shape them via large space-bandwidth product. Rapid prototyping of such a compound system requires component interchangeability. This represents a functional challenge in terms of fabrication and alignment of high-performance optical systems. Here, we report a flexible and interchangeable interface between a photonic integrated circuit and the free space using an array of low-loss metaoptics and demonstrate multifunctional beam shaping at a wavelength of 780 nm. We show that robust and high-fidelity operation of the designed optical functions can be achieved without prior precise characterization of the free-space input nor stringent alignment between the photonic integrated chip and the metaoptics chip. A diffraction limited spot of ∼3 μm for a hyperboloid metalens of numerical aperture 0.15 is achieved despite an input Gaussian elliptical deformation of up to 35% and misalignments of the components of up to 20 μm. A holographic image with a peak signal-to-noise ratio of >10 dB is also reported. 
    more » « less
    Free, publicly-accessible full text available May 1, 2024