skip to main content

Search for: All records

Creators/Authors contains: "McMahan, Jeremy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 30, 2024
  2. Free, publicly-accessible full text available June 30, 2024
  3. In offline multi-agent reinforcement learning (MARL), agents estimate policies from a given dataset. We study reward-poisoning attacks in this setting where an exogenous attacker modifies the rewards in the dataset before the agents see the dataset. The attacker wants to guide each agent into a nefarious target policy while minimizing the Lp norm of the reward modification. Unlike attacks on single-agent RL, we show that the attacker can install the target policy as a Markov Perfect Dominant Strategy Equilibrium (MPDSE), which rational agents are guaranteed to follow. This attack can be significantly cheaper than separate single-agent attacks. We show that the attack works on various MARL agents including uncertainty-aware learners, and we exhibit linear programs to efficiently solve the attack problem. We also study the relationship between the structure of the datasets and the minimal attack cost. Our work paves the way for studying defense in offline MARL. 
    more » « less
    Free, publicly-accessible full text available June 27, 2024
  4. Megow, Nicole ; Smith, Adam (Ed.)
    We revisit the classic Pandora’s Box (PB) problem under correlated distributions on the box values. Recent work of [Shuchi Chawla et al., 2020] obtained constant approximate algorithms for a restricted class of policies for the problem that visit boxes in a fixed order. In this work, we study the complexity of approximating the optimal policy which may adaptively choose which box to visit next based on the values seen so far. Our main result establishes an approximation-preserving equivalence of PB to the well studied Uniform Decision Tree (UDT) problem from stochastic optimization and a variant of the Min-Sum Set Cover (MSSC_f) problem. For distributions of support m, UDT admits a log m approximation, and while a constant factor approximation in polynomial time is a long-standing open problem, constant factor approximations are achievable in subexponential time [Ray Li et al., 2020]. Our main result implies that the same properties hold for PB and MSSC_f. We also study the case where the distribution over values is given more succinctly as a mixture of m product distributions. This problem is again related to a noisy variant of the Optimal Decision Tree which is significantly more challenging. We give a constant-factor approximation that runs in time n^Õ(m²/ε²) when the mixture components on every box are either identical or separated in TV distance by ε. 
    more » « less