skip to main content


Search for: All records

Creators/Authors contains: "Muller, Raymond"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 9, 2024
  2. Free, publicly-accessible full text available August 9, 2024
  3. Modern autonomous systems rely on both object detection and object tracking in their visual perception pipelines. Although many recent works have attacked the object detection component of autonomous vehicles, these attacks do not work on full pipelines that integrate object tracking to enhance the object detector's accuracy. Meanwhile, existing attacks against object tracking either lack real-world applicability or do not work against a powerful class of object trackers, Siamese trackers. In this paper, we present AttrackZone, a new physically-realizable tracker hijacking attack against Siamese trackers that systematically determines valid regions in an environment that can be used for physical perturbations. AttrackZone exploits the heatmap generation process of Siamese Region Proposal Networks in order to take control of an object's bounding box, resulting in physical consequences including vehicle collisions and masked intrusion of pedestrians into unauthorized areas. Evaluations in both the digital and physical domain show that AttrackZone achieves its attack goals 92% of the time, requiring only 0.3-3 seconds on average. 
    more » « less
  4. With emerging vision-based autonomous driving (AD) systems, it becomes increasingly important to have datasets to evaluate their correct operation and identify potential security flaws. However, when collecting a large amount of data, either human experts manually label potentially hundreds of thousands of image frames or systems use machine learning algorithms to label the data, with the hope that the accuracy is good enough for the application. This can become especially problematic when tracking the context information, such as the location and velocity of surrounding objects, useful to evaluate the correctness and improve stability and robustness of the AD systems. In this paper, we introduce DRIVETRUTH, a data collection framework built on CARLA, an open-source simulator for AD research, which constructs datasets with automatically generated accurate object labels, bounding boxes of objects and their contextual information through accessing simulation state and using semantic LiDAR raycasts. By leveraging the actual state of the simulation and the agents within it, we guarantee complete accuracy in all labels and gathered contextual information. Further, the use of the simulator provides easily collecting data in diverse environmental conditions and agent behaviors, with lighting, weather, and traffic behavior being configurable within the simulation. Through this effort, we provide users a means to extracting actionable simulated data from CARLA to test and explore attacks and defenses for AD systems. 
    more » « less