skip to main content


Search for: All records

Creators/Authors contains: "Nakamura, Shuji"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Distributed feedback laser diodes (DFBs) serve as simple, compact, narrow-band light sources supporting a wide range of photonic applications. Typical linewidths are on the order of sub-MHz for free-running III-V DFBs at infrared wavelengths, but linewidths of short-wavelength GaN-based DFBs are considerably worse or unreported. Here, we present a free-running InGaN DFB operating at 443 nm with an intrinsic linewidth of 685 kHz at a continuous wave output power of 40 mW. This performance is achieved using a first-order embedded hydrogen silsesquioxane (HSQ) surface grating. The frequency noise is measured using a cross-correlated self-heterodyne frequency discriminator, and two estimations of integrated linewidth are evaluated using 1/πintegration andβ-separation line integration methods.

     
    more » « less
  2. The V-defect is a naturally occurring inverted hexagonal pyramid structure that has been studied in GaN and InGaN growth since the 1990s. Strategic use of V-defects in pre-quantum well superlattices or equivalent preparation layers has enabled record breaking efficiencies for green, yellow, and red InGaN light emitting diodes (LEDs) utilizing lateral injection of holes through the semi-polar sidewalls of the V-defects. In this article, we use advanced characterization techniques such as scattering contrast transmission electron microscopy, high angle annular dark field scanning transmission electron microscopy, x-ray fluorescence maps, and atom probe tomography to study the active region compositions, V-defect formation, and V-defect structure in green and red LEDs grown on (0001) patterned sapphire and (111) Si substrates. We identify two distinct types of V-defects. The “large” V-defects are those that form in the pre-well superlattice and promote hole injection, usually nucleating on mixed (Burgers vector b=±a±c) character threading dislocations. In addition, “small” V-defects often form in the multi-quantum well region and are believed to be deleterious to high-efficiency LEDs by providing non-radiative pathways. The small V-defects are often associated with basal plane stacking faults or stacking fault boxes. Furthermore, we show through scattering contrast transmission electron microscopy that during V-defect filling, the threading dislocation, which runs up the center of the V-defect, will “bend” onto one of the six {101¯1} semi-polar planes. This result is essential to understanding non-radiative recombination in V-defect engineered LEDs.

     
    more » « less
  3. GaN lasers with green emission wavelength at λ = 510 nm have been fabricated using novel nano-porous GaN cladding under pulsed electrical injection. The low slope efficiency of 0.13 W/A and high threshold current density of 14 kA/cm2are related to a combination of poor injection efficiency and high loss, analyzed by the independent characterization methods of variable stripe length and segmented contacts. Continuous wave operation showed narrowed spectra and augmented spontaneous emission.

     
    more » « less
  4. Morkoç, Hadis ; Fujioka, Hiroshi ; Schwarz, Ulrich T. (Ed.)
    Efficient high-power operation of light emitting diodes based on InGaN quantum wells (QWs) requires rapid interwell hole transport and low nonradiative recombination. The transport rate can be increased by replacing GaN barriers with that of InGaN. Introduction of InGaN barriers, however, increases the rate of the nonradiative recombination. In this work, we have attempted to reduce the negative impact of the nonradiative recombination by introducing thin GaN or AlGaN interlayers at the QW/barrier interfaces. The interlayers, indeed, reduce the nonradiative recombination rate and increase the internal quantum efficiency by about 10%. Furthermore, the interlayers do not substantially slow down the interwell hole transport; for 0.5 nm Al0.10Ga0.90N interlayers the transport rate has even been found to increase. Another positive feature of the interlayers is narrowing of the QW PL linewidth, which is attributed to smoother QW interfaces and reduced fluctuations of the QW width. 
    more » « less
  5. We report continuous wave operation of electrically injected InGaN laser diodes using nano-porous GaN n-side cladding with 33% porosity. At 454 nm emission wavelength, the pulsed injection slope efficiency is 0.24 W/A with a high loss of 82 cm-1. The considerable 60 cm-1of excess loss of the nano-porous clad lasers is attributed to scattering at pores in unintentionally 3% porosified layers, supported by numerical modeling. Simulations comparing porous GaN cladding to AlInN cladding for lasers operating at 589 nm indicate that the porous cladding provides similar internal loss and lower thermal impedance.

     
    more » « less