Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT High-precision light curves from space-based telescopes and precise astrometry from the Gaia satellite have revolutionized our ability to characterize exoplanet host stars. Asteroseismology has allowed for stellar parameters to be determined to remarkable precision, achieving age uncertainties as low as 10−20 per cent for Sun-like stars. We present an asteroseismic analysis of the naked-eye ($V = 5.78$), G4V star $$\nu ^2$$ Lupi (HD 136352), which hosts three small transiting planets with orbital periods of 11, 27, and 107 d. We used the latest 20-s cadence photometry data from the Transiting Exoplanet Survey Satellite (TESS) to extract stellar oscillations. Comparing these to stellar models, we find that the star has a mass of $$0.83^{+0.04}_{-0.03}$$ (ran) $$\pm 0.07$$ (sys) $$M_\odot$$, a radius of $$1.00^{+0.01}_{-0.02}$$ (ran) $$\pm 0.04$$ (sys) $$R_\odot$$, and an age of $$11.9^{+2.6}_{-1.6}$$ (ran) $$\pm 1.7$$ (sys) Gyr. We also confirm that the star is likely a member of the Galactic thick disc based on its Galactic velocities, consistent with the asteroseismic age. Based on the newly determined stellar parameters, we recalculate the planet parameters. The inner planet has a mass of $$4.55 \pm 0.40$$ $$M_{\oplus }$$ and a radius of $$1.57 \pm 0.04$$ $$R_{\oplus }$$, suggesting the planet is rocky and consisting primarily of silicates without an iron-rich core, consistent with its old age and significant alpha-element enhancement. The two outer planets have masses and radii of $$10.87 \pm 0.62$$ $$M_{\oplus }$$ and $$2.75 \pm 0.06$$ $$R_{\oplus }$$, and $$8.52 \pm 0.90$$ $$M_{\oplus }$$ and $$2.42 \pm 0.08$$ $$R_{\oplus }$$, respectively, suggesting both are sub-Neptune planets with a significant H–He atmosphere.more » « lessFree, publicly-accessible full text available July 21, 2026
-
Abstract The solar-type subgiantβHyi has long been studied as an old analog of the Sun. Although the rotation period has never been measured directly, it was estimated to be near 27 days. As a Southern Hemisphere target, it was not monitored by long-term stellar activity surveys, but archival International Ultraviolet Explorer data revealed a 12 yr activity cycle. Previous ground-based asteroseismology suggested that the star is slightly more massive and substantially larger and older than the Sun, so the similarity of both the rotation rate and the activity cycle period to solar values is perplexing. We use two months of precise time-series photometry from the Transiting Exoplanet Survey Satellite to detect solar-like oscillations inβHyi and determine the fundamental stellar properties from asteroseismic modeling. We also obtain a direct measurement of the rotation period, which was previously estimated from an ultraviolet activity–rotation relation. We then use rotational evolution modeling to predict the rotation period expected from either standard spin-down or weakened magnetic braking (WMB). We conclude that the rotation period ofβHyi is consistent with WMB and that changes in stellar structure on the subgiant branch can reinvigorate the large-scale dynamo and briefly sustain magnetic activity cycles. Our results support the existence of a “born-again” dynamo in evolved subgiants—previously suggested to explain the cycle in 94 Aqr Aa—which can best be understood within the WMB scenario.more » « less
-
Arctic sea-ice loss is emblematic of an amplified Arctic water cycle and has critical feedback implications for global climate. Stable isotopes (δ 18 O, δ 2 H, d-excess ) are valuable tracers for constraining water cycle and climate processes through space and time. Yet, the paucity of well-resolved Arctic isotope data preclude an empirically derived understanding of the hydrologic changes occurring today, in the deep (geologic) past, and in the future. To address this knowledge gap, the Pan-Arctic Precipitation Isotope Network (PAPIN) was established in 2018 to coordinate precipitation sampling at 19 stations across key tundra, subarctic, maritime, and continental climate zones. Here, we present a first assessment of rainfall samples collected in summer 2018 ( n = 281) and combine new isotope and meteorological data with sea ice observations, reanalysis data, and model simulations. Data collectively establish a summer Arctic Meteoric Water Line where δ 2 H = 7.6⋅δ 18 O–1.8 ( r 2 = 0.96, p < 0.01). Mean amount-weighted δ 18 O, δ 2 H, and d-excess values were −12.3, −93.5, and 4.9‰, respectively, with the lowest summer mean δ 18 O value observed in northwest Greenland (−19.9‰) and the highest in Iceland (−7.3‰). Southern Alaska recorded the lowest mean d-excess (−8.2%) and northern Russia the highest (9.9‰). We identify a range of δ 18 O-temperature coefficients from 0.31‰/°C (Alaska) to 0.93‰/°C (Russia). The steepest regression slopes (>0.75‰/°C) were observed at continental sites, while statistically significant temperature relations were generally absent at coastal stations. Model outputs indicate that 68% of the summer precipitating air masses were transported into the Arctic from mid-latitudes and were characterized by relatively high δ 18 O values. Yet 32% of precipitation events, characterized by lower δ 18 O and high d-excess values, derived from northerly air masses transported from the Arctic Ocean and/or its marginal seas, highlighting key emergent oceanic moisture sources as sea ice cover declines. Resolving these processes across broader spatial-temporal scales is an ongoing research priority, and will be key to quantifying the past, present, and future feedbacks of an amplified Arctic water cycle on the global climate system.more » « less
-
Abstract Asteroseismology of bright stars has become increasingly important as a method to determine the fundamental properties (in particular ages) of stars. The Kepler Space Telescope initiated a revolution by detecting oscillations in more than 500 main-sequence and subgiant stars. However, most Kepler stars are faint and therefore have limited constraints from independent methods such as long-baseline interferometry. Here we present the discovery of solar-like oscillations in α Men A, a naked-eye ( V = 5.1) G7 dwarf in TESS’s southern continuous viewing zone. Using a combination of astrometry, spectroscopy, and asteroseismology, we precisely characterize the solar analog α Men A ( T eff = 5569 ± 62 K, R ⋆ = 0.960 ± 0.016 R ⊙ , M ⋆ = 0.964 ± 0.045 M ⊙ ). To characterize the fully convective M dwarf companion, we derive empirical relations to estimate mass, radius, and temperature given the absolute Gaia magnitude and metallicity, yielding M ⋆ = 0.169 ± 0.006 M ⊙ , R ⋆ = 0.19 ± 0.01 R ⊙ , and T eff = 3054 ± 44 K. Our asteroseismic age of 6.2 ± 1.4 (stat) ± 0.6 (sys) Gyr for the primary places α Men B within a small population of M dwarfs with precisely measured ages. We combined multiple ground-based spectroscopy surveys to reveal an activity cycle of P = 13.1 ± 1.1 yr for α Men A, a period similar to that observed in the Sun. We used different gyrochronology models with the asteroseismic age to estimate a rotation period of ∼30 days for the primary. Alpha Men A is now the closest ( d = 10 pc) solar analog with a precise asteroseismic age from space-based photometry, making it a prime target for next-generation direct-imaging missions searching for true Earth analogs.more » « less
-
Abstract PLATO (PLAnetary Transits and Oscillations of stars) is ESA’s M3 mission designed to detect and characterise extrasolar planets and perform asteroseismic monitoring of a large number of stars. PLATO will detect small planets (down to <2R$$_\textrm{Earth}$$ ) around bright stars (<11 mag), including terrestrial planets in the habitable zone of solar-like stars. With the complement of radial velocity observations from the ground, planets will be characterised for their radius, mass, and age with high accuracy (5%, 10%, 10% for an Earth-Sun combination respectively). PLATO will provide us with a large-scale catalogue of well-characterised small planets up to intermediate orbital periods, relevant for a meaningful comparison to planet formation theories and to better understand planet evolution. It will make possible comparative exoplanetology to place our Solar System planets in a broader context. In parallel, PLATO will study (host) stars using asteroseismology, allowing us to determine the stellar properties with high accuracy, substantially enhancing our knowledge of stellar structure and evolution. The payload instrument consists of 26 cameras with 12cm aperture each. For at least four years, the mission will perform high-precision photometric measurements. Here we review the science objectives, present PLATO‘s target samples and fields, provide an overview of expected core science performance as well as a description of the instrument and the mission profile towards the end of the serial production of the flight cameras. PLATO is scheduled for a launch date end 2026. This overview therefore provides a summary of the mission to the community in preparation of the upcoming operational phases.more » « lessFree, publicly-accessible full text available June 1, 2026
-
Most previous efforts to calibrate how rotation and magnetic activity depend on stellar age and mass have relied on observations of clusters, where isochrones from stellar evolution models are used to determine the properties of the ensemble. Asteroseismology employs similar models to measure the properties of an individual star by matching its normal modes of oscillation, yielding the stellar age and mass with high precision. We use 27 days of photometry from the {\it Transiting Exoplanet Survey Satellite} (TESS) to characterize solar-like oscillations in the G8 subgiant of the 94~Aqr triple system. The resulting stellar properties, when combined with a reanalysis of 35 years of activity measurements from the Mount Wilson HK project, allow us to probe the evolution of rotation and magnetic activity in the system. The asteroseismic age of the subgiant agrees with a stellar isochrone fit, but the rotation period is much shorter than expected from standard models of angular momentum evolution. We conclude that weakened magnetic braking may be needed to reproduce the stellar properties, and that evolved subgiants in the hydrogen shell-burning phase can reinvigorate large-scale dynamo action and briefly sustain magnetic activity cycles before ascending the red giant branch.more » « less
-
Human adaptation depends on the integration of slow life history, complex production skills, and extensive sociality. Refining and testing models of the evolution of human life history and cultural learning benefit from increasingly accurate measurement of knowledge, skills, and rates of production with age. We pursue this goal by inferring hunters’ increases and declines of skill from approximately 23,000 hunting records generated by more than 1800 individuals at 40 locations. The data reveal an average age of peak productivity between 30 and 35 years of age, although high skill is maintained throughout much of adulthood. In addition, there is substantial variation both among individuals and sites. Within study sites, variation among individuals depends more on heterogeneity in rates of decline than in rates of increase. This analysis sharpens questions about the coevolution of human life history and cultural adaptation.more » « less
-
null (Ed.)ABSTRACT We report the discovery of a warm sub-Saturn, TOI-257b (HD 19916b), based on data from NASA’s Transiting Exoplanet Survey Satellite (TESS). The transit signal was detected by TESS and confirmed to be of planetary origin based on radial velocity observations. An analysis of the TESS photometry, the Minerva-Australis, FEROS, and HARPS radial velocities, and the asteroseismic data of the stellar oscillations reveals that TOI-257b has a mass of MP = 0.138 ± 0.023 $$\rm {M_J}$$ (43.9 ± 7.3 $$\, M_{\rm \oplus}$$), a radius of RP = 0.639 ± 0.013 $$\rm {R_J}$$ (7.16 ± 0.15 $$\, \mathrm{ R}_{\rm \oplus}$$), bulk density of $$0.65^{+0.12}_{-0.11}$$ (cgs), and period $$18.38818^{+0.00085}_{-0.00084}$$ $$\rm {days}$$. TOI-257b orbits a bright (V = 7.612 mag) somewhat evolved late F-type star with M* = 1.390 ± 0.046 $$\rm {M_{sun}}$$, R* = 1.888 ± 0.033 $$\rm {R_{sun}}$$, Teff = 6075 ± 90 $$\rm {K}$$, and vsin i = 11.3 ± 0.5 km s−1. Additionally, we find hints for a second non-transiting sub-Saturn mass planet on a ∼71 day orbit using the radial velocity data. This system joins the ranks of a small number of exoplanet host stars (∼100) that have been characterized with asteroseismology. Warm sub-Saturns are rare in the known sample of exoplanets, and thus the discovery of TOI-257b is important in the context of future work studying the formation and migration history of similar planetary systems.more » « less
An official website of the United States government
