skip to main content

Search for: All records

Creators/Authors contains: "Powell, Scott"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Recent advances in phylogenomics allow for the use of large amounts of genetic information in phylogenetic inference. Ideally, the increased resolution and accuracy of such inferences facilitate improved understanding of macroevolutionary processes. Here, we integrate ultraconserved elements (UCEs) with fossil and biogeographic range data to explore diversification and geographic range evolution in the diverse turtle ant genus Cephalotes Latreille, 1802 (Hymenoptera: Formicidae). We focus on the potential role of the uplift of the Panamanian land bridge and the putative ephemeral GAARlandia land bridge linking South America and the Antilles in shaping evolution in this group. Our phylogenetic analyses provide new resolution to the backbone of the turtle ant phylogeny. We further found that most geographic range shifts between South America and Central America regions were temporally consistent with the development of the Panamanian land bridge, while we did not find support for the GAARlandia land bridge. Additionally, we did not infer any shifts in diversification rates associated with our focal land bridges, or any other historical events (we inferred a single diversification rate regime across the genus). Our findings highlight the impact of the Panamanian land bridge for Cephalotes geographic range evolution as well as the influence of taxonomic sampling on macroevolutionary inferences.

    more » « less
  2. null (Ed.)
  3. null (Ed.)
    Biological systems are typically dependent on transportation networks for the efficient distribution of resources and information. Revealing the decentralized mechanisms underlying the generative process of these networks is key in our global understanding of their functions and is of interest to design, manage and improve human transport systems. Ants are a particularly interesting taxon to address these issues because some species build multi-sink multi-source transport networks analogous to human ones. Here, by combining empirical field data and modelling at several scales of description, we show that pre-existing mechanisms of recruitment with positive feedback involved in foraging can account for the structure of complex ant transport networks. Specifically, we find that emergent group-level properties of these empirical networks, such as robustness, efficiency and cost, can arise from models built on simple individual-level behaviour addressing a quality-distance trade-off by the means of pheromone trails. Our work represents a first step in developing a theory for the generation of effective multi-source multi-sink transport networks based on combining exploration and positive reinforcement of best sources. 
    more » « less
  4. Abstract

    Biological transportation networks must balance competing functional priorities. The self-organizing mechanisms used to generate such networks have inspired scalable algorithms to construct and maintain low-cost and efficient human-designed transport networks. The pheromone-based trail networks of ants have been especially valuable in this regard. Here, we use turtle ants as our focal system: In contrast to the ant species usually used as models for self-organized networks, these ants live in a spatially constrained arboreal environment where both nesting options and connecting pathways are limited. Thus, they must solve a distinct set of challenges which resemble those faced by human transport engineers constrained by existing infrastructure. Here, we ask how a turtle ant colony’s choice of which nests to include in a network may be influenced by their potential to create connections to other nests. In laboratory experiments withCephalotes variansandCephalotes texanus, we show that nest choice is influenced by spatial constraints, but in unexpected ways. Under one spatial configuration, colonies preferentially occupied more connected nest sites; however, under another spatial configuration, this preference disappeared. Comparing the results of these experiments to an agent-based model, we demonstrate that this apparently idiosyncratic relationship between nest connectivity and nest choice can emerge without nest preferences via a combination of self-reinforcing random movement along constrained pathways and density-dependent aggregation at nests. While this mechanism does not consistently lead to the de-novo construction of low-cost, efficient transport networks, it may be an effective way to expand a network, when coupled with processes of pruning and restructuring.

    more » « less
  5. Abstract Observations have shown that tropical convection is influenced by fluctuations in temperature and moisture in the lower free troposphere (LFT; 600–850 hPa), as well as moist enthalpy (ME) fluctuations beneath the 850 hPa level, referred to as the deep boundary layer (DBL; 850–1000 hPa). A framework is developed that consolidates these three quantities within the context of the buoyancy of an entraining plume. A “plume buoyancy equation” is derived based on a relaxed version of the weak temperature gradient (WTG) approximation. Analysis of this equation using quantities derived from the Dynamics of the Madden–Julian Oscillation (DYNAMO) sounding array data reveals that processes occurring within the DBL and the LFT contribute nearly equally to the evolution of plume buoyancy, indicating that processes that occur in both layers are critical to the evolution of tropical convection. Adiabatic motions play an important role in the evolution of buoyancy both at the daily and longer time scales and are comparable in magnitude to horizontal moisture advection and vertical moist static energy advection by convection. The plume buoyancy equation may explain convective coupling at short time scales in both temperature and moisture fluctuations and can be used to complement the commonly used moist static energy budget, which emphasizes the slower evolution of the convective envelope in tropical motion systems. 
    more » « less
  6. Abstract

    Sustaining beneficial gut symbioses presents a major challenge for animals, including holometabolous insects. Social insects may meet such challenges through partner fidelity, aided by behavioral symbiont transfer and transgenerational inheritance through colony founders. We address such potential through colony‐wide explorations across 13 eusocial, holometabolous insect species in the ant genusCephalotes. Through amplicon sequencing, we show that previously characterized worker microbiomes are conserved in soldier castes, that adult microbiomes exhibit trends of phylosymbiosis, and thatCephalotescospeciate with their most abundant adult‐enriched symbiont. We find, also, that winged queens harbor worker‐like microbiomes prior to colony founding, suggesting vertical inheritance as a means of partner fidelity. Whereas some adult‐abundant symbionts colonize larvae, larval gut microbiomes are uniquely characterized by environmental bacteria from the Enterobacteriales, Lactobacillales, and Actinobacteria. Distributions acrossCephaloteslarvae suggest more than 40 million years of conserved environmental filtering and, thus, a second sustaining mechanism behind an ancient, developmentally partitioned symbiosis.

    more » « less
  7. Abstract

    This study examines thermodynamic–convection coupling in observations and reanalyses, and attempts to establish process-level benchmarks needed to guide model development. Thermodynamic profiles obtained from the NOAA Integrated Global Radiosonde Archive, COSMIC-1 GPS radio occultations, and several reanalyses are examined alongside Tropical Rainfall Measuring Mission precipitation estimates. Cyclical increases and decreases in a bulk measure of lower-tropospheric convective instability are shown to be coupled to the cyclical amplification and decay of convection. This cyclical flow emerges from conditional-mean analysis in a thermodynamic space composed of two components: a measure of “undiluted” instability, which neglects lower-free-tropospheric (LFT) entrainment, and a measure of the reduction of instability by LFT entrainment. The observational and reanalysis products examined share the following qualitatively robust characterization of these convective cycles: increases in undiluted instability tend to occur when the LFT is less saturated, are followed by increases in LFT saturation and precipitation rate, which are then followed by decreases in undiluted instability. Shallow, convective, and stratiform precipitation are coupled to these cycles in a manner consistent with meteorological expectations. In situ and satellite observations differ systematically from reanalyses in their depictions of lower-tropospheric temperature and moisture variations throughout these convective cycles. When using reanalysis thermodynamic fields, these systematic differences cause variations in lower-free-tropospheric saturation deficit to appear less influential in determining the strength of convection than is suggested by observations. Disagreements among reanalyses, as well as between reanalyses and observations, pose significant challenges to process-level assessments of thermodynamic–convection coupling.

    more » « less