skip to main content

Search for: All records

Creators/Authors contains: "Qiu, S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract 316L stainless steel (316L SS) is a flagship material for structural applications in corrosive environments, having been extensively studied for decades for its favorable balance between mechanical and corrosion properties. More recently, 316L SS has also proven to have excellent printability when parts are produced with additive manufacturing techniques, notably laser powder bed fusion (LPBF). Because of the harsh thermo-mechanical cycles experienced during rapid solidification and cooling, LPBF processing tends to generate unique microstructures. Strong heterogeneities can be found inside grains, including trapped elements, nano-inclusions, and a high density of dislocations that form the so-called cellular structure. Interestingly, LPBFmore »316L SS not only exhibits better mechanical properties than its conventionally processed counterpart, but it also usually offers much higher resistance to pitting in chloride solutions. Unfortunately, the complexity of the LPBF microstructures, in addition to process-induced defects, such as porosity and surface roughness, have slowed progress toward linking specific microstructural features to corrosion susceptibility and complicated the development of calibrated simulations of pitting phenomena. The first part of this article is dedicated to an in-depth review of the microstructures found in LPBF 316L SS and their potential effects on the corrosion properties, with an emphasis on pitting resistance. The second part offers a perspective of some relevant modeling techniques available to simulate the corrosion of LPBF 316L SS, including current challenges that should be overcome.« less
    Free, publicly-accessible full text available April 1, 2023
  2. Free, publicly-accessible full text available October 1, 2023
  3. Free, publicly-accessible full text available September 1, 2023
  4. Free, publicly-accessible full text available July 7, 2023
  5. Free, publicly-accessible full text available June 1, 2023
  6. Free, publicly-accessible full text available June 1, 2023
  7. Free, publicly-accessible full text available June 1, 2023
  8. Abstract The multiplicity dependence of jet production in pp collisions at the centre-of-mass energy of $$\sqrt{s} = 13\ {\mathrm {TeV}}$$ s = 13 TeV is studied for the first time. Jets are reconstructed from charged particles using the anti- $$k_\mathrm {T}$$ k T algorithm with resolution parameters R varying from 0.2 to 0.7. The jets are measured in the pseudorapidity range $$|\eta _{\mathrm{jet}}|< 0.9-R$$ | η jet | < 0.9 - R and in the transverse momentum range $$5more »by the ALICE forward detector V0. The $$p_{\mathrm T}$$ p T differential cross section of charged-particle jets are compared to leading order (LO) and next-to-leading order (NLO) perturbative quantum chromodynamics (pQCD) calculations. It is found that the data are better described by the NLO calculation, although the NLO prediction overestimates the jet cross section below $$20\ {\mathrm {GeV}}/c$$ 20 GeV / c . The cross section ratios for different R are also measured and compared to model calculations. These measurements provide insights into the angular dependence of jet fragmentation. The jet yield increases with increasing self-normalised charged-particle multiplicity. This increase shows only a weak dependence on jet transverse momentum and resolution parameter at the highest multiplicity. While such behaviour is qualitatively described by the present version of PYTHIA, quantitative description may require implementing new mechanisms for multi-particle production in hadronic collisions.« less
    Free, publicly-accessible full text available June 1, 2023
  9. A bstract A measurement of inclusive, prompt, and non-prompt J/ ψ production in p-Pb collisions at a nucleon-nucleon centre-of-mass energy $$ \sqrt{s_{\mathrm{NN}}} $$ s NN = 5 . 02 TeV is presented. The inclusive J/ ψ mesons are reconstructed in the dielectron decay channel at midrapidity down to a transverse momentum p T = 0. The inclusive J/ ψ nuclear modification factor R pPb is calculated by comparing the new results in p-Pb collisions to a recently measured proton-proton reference at the same centre-of-mass energy. Non-prompt J/ ψ mesons, which originate from the decay of beauty hadrons, are separated frommore »promptly produced J/ ψ on a statistical basis for p T larger than 1.0 GeV/ c . These results are based on the data sample collected by the ALICE detector during the 2016 LHC p-Pb run, corresponding to an integrated luminosity $$ \mathcal{L} $$ L int = 292 ± 11 μ b − 1 , which is six times larger than the previous publications. The total uncertainty on the p T -integrated inclusive J/ ψ and non-prompt J/ ψ cross section are reduced by a factor 1.7 and 2.2, respectively. The measured cross sections and R pPb are compared with theoretical models that include various combinations of cold nuclear matter effects. From the non-prompt J/ ψ production cross section, the $$ \mathrm{b}\overline{\mathrm{b}} $$ b b ¯ production cross section at midrapidity, $$ {\mathrm{d}\sigma}_{\mathrm{b}\overline{\mathrm{b}}} $$ d σ b b ¯ / d y , and the total cross section extrapolated over full phase space, $$ {\sigma}_{\mathrm{b}\overline{\mathrm{b}}} $$ σ b b ¯ , are derived.« less
    Free, publicly-accessible full text available June 1, 2023
  10. Abstract In particle collider experiments, elementary particle interactions with large momentum transfer produce quarks and gluons (known as partons) whose evolution is governed by the strong force, as described by the theory of quantum chromodynamics (QCD) 1 . These partons subsequently emit further partons in a process that can be described as a parton shower 2 , which culminates in the formation of detectable hadrons. Studying the pattern of the parton shower is one of the key experimental tools for testing QCD. This pattern is expected to depend on the mass of the initiating parton, through a phenomenon known asmore »the dead-cone effect, which predicts a suppression of the gluon spectrum emitted by a heavy quark of mass m Q and energy E , within a cone of angular size m Q / E around the emitter 3 . Previously, a direct observation of the dead-cone effect in QCD had not been possible, owing to the challenge of reconstructing the cascading quarks and gluons from the experimentally accessible hadrons. We report the direct observation of the QCD dead cone by using new iterative declustering techniques 4,5 to reconstruct the parton shower of charm quarks. This result confirms a fundamental feature of QCD. Furthermore, the measurement of a dead-cone angle constitutes a direct experimental observation of the non-zero mass of the charm quark, which is a fundamental constant in the standard model of particle physics.« less
    Free, publicly-accessible full text available May 19, 2023