Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Open Modification Search (OMS) is a promising algorithm for mass spectrometry analysis that enables the discovery of modified peptides. However, OMS encounters challenges as it exponentially extends the search scope. Existing OMS accelerators either have limited parallelism or struggle to scale effectively with growing data volumes. In this work, we introduce an OMS accelerator utilizing multi-level-cell (MLC) RRAM memory to enhance storage capacity by 3x. Through in-memory computing, we achieve up to 77x faster data processing with two to three orders of magnitude better energy efficiency. Testing was done on a fabricated MLC RRAM chip. We leverage hyperdimensional computing to tolerate up to 10% memory errors while delivering massive parallelism in hardware.more » « less
-
Traditional systems for indoor pressure sensing and human activity recognition (HAR) rely on costly, high-resolution mats and computationally intensive neural network-based (NN-based) models that are prone to noise. In contrast, we design a cost-effective and noise-resilient pressure mat system for HAR, leveraging Velostat for intelligent pressure sensing and a novel hyperdimensional computing (HDC) classifier that is lightweight and highly noise resilient. To measure the performance of our system, we collected two datasets, capturing the static and continuous nature of human movements. Our HDC-based classification algorithm shows an accuracy of 93.19%, improving the accuracy by 9.47% over state-of-the-art CNNs, along with an 85% reduction in energy consumption. We propose a new HDC noise-resilient algorithm and analyze the performance of our proposed method in the presence of three different kinds of noise, including memory and communication, input, and sensor noise. Our system is more resilient across all three noise types. Specifically, in the presence of Gaussian noise, we achieve an accuracy of 92.15% (97.51% for static data), representing a 13.19% (8.77%) improvement compared to state-of-the-art CNNs.more » « less
An official website of the United States government

Full Text Available