skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rudra, Atri"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 24, 2026
  2. Probabilistic databases (PDBs) provide users with a principled way to query data that is incomplete or imprecise. In this work, we study computing expected multiplicities of query results over probabilistic databases under bag semantics which has PTIME data complexity. However, does this imply that bag probabilistic databases are practical? We strive to answer this question from both a theoretical as well as a systems perspective. We employ concepts from fine-grained complexity to demonstrate that exact bag probabilistic query processing is fundamentally less efficient than deterministic bag query evaluation, but that fast approximations are possible by sampling monomials from a circuit representation of a result tuple's lineage. A remaining issue, however, is that constructing such circuits, while in PTIME, can nonetheless have significant overhead. To avoid this cost, we utilize approximate query processing techniques to directly sample monomials without materializing lineage upfront. Our implementation inFastPDBprovides accurate anytime approximation of probabilistic query answers and scales to datasets orders of magnitude larger than competing methods. 
    more » « less
    Free, publicly-accessible full text available February 10, 2026