skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Schlotterer, Oliver"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 20, 2026
  2. A wealth of information on multiloop string amplitudes is encoded in fermionic two-point functions known as Szegö kernels. Here we show that cyclic products of any number of Szegö kernels on a Riemann surface of arbitrary genus may be decomposed into linear combinations of modular tensors on moduli space that carry all the dependence on the spin structure δ . The δ -independent coefficients in these combinations carry all the dependence on the marked points and are composed of the integration kernels of higher-genus polylogarithms. We determine the antiholomorphic moduli derivatives of the δ -dependent modular tensors. Published by the American Physical Society2024 
    more » « less
  3. A<sc>bstract</sc> The summation over spin structures, which is required to implement the GSO projection in the RNS formulation of superstring theories, often presents a significant impediment to the explicit evaluation of superstring amplitudes. In this paper we discover that, for Riemann surfaces of genus two and even spin structures, a collection of novel identities leads to a dramatic simplification of the spin structure sum. Explicit formulas for an arbitrary number of vertex points are obtained in two steps. First, we show that the spin structure dependence of a cyclic product of Szegö kernels (i.e. Dirac propagators for worldsheet fermions) may be reduced to the spin structure dependence of the four-point function. Of particular importance are certaintrilinear relationsthat we shall define and prove. In a second step, the known expressions for the genus-two even spin structure measure are used to perform the remaining spin structure sums. The dependence of the spin summand on the vertex points is reduced to simple building blocks that can already be identified from the two-point function. The hyper-elliptic formulation of genus-two Riemann surfaces is used to derive these results, and its SL(2,ℂ) covariance is employed to organize the calculations and the structure of the final formulas. The translation of these results into the language of Riemannϑ-functions, and applications to the evaluation of higher-point string amplitudes, are relegated to subsequent companion papers. 
    more » « less
  4. A bstract The contribution from even spin structures to the genus-two amplitude for five massless external NS states in Type II and Heterotic superstrings is evaluated from first principles in the RNS formulation. Using chiral splitting with the help of loop momenta this problem reduces to the evaluation of the corresponding chiral amplitude, which is carried out using the same techniques that were used for the genus-two amplitude with four external NS states. The results agree with the parity-even NS components of a construction using chiral splitting and pure spinors given in earlier companion papers [29] and [33]. 
    more » « less
  5. The purpose of this White Paper is to review recent progress towards elucidating and evaluating string amplitudes, relating them to quantum field theory amplitudes, applying their predictions to string dualities, exploring their connection with gravitational physics, and deepening our under- standing of their mathematical structure. We also present a selection of targets for future research. 
    more » « less
  6. null (Ed.)
    A bstract Elliptic modular graph functions and forms (eMGFs) are defined for arbitrary graphs as natural generalizations of modular graph functions and forms obtained by including the character of an Abelian group in their Kronecker-Eisenstein series. The simplest examples of eMGFs are given by the Green function for a massless scalar field on the torus and the Zagier single-valued elliptic polylogarithms. More complicated eMGFs are produced by the non-separating degeneration of a higher genus surface to a genus one surface with punctures. eMGFs may equivalently be represented by multiple integrals over the torus of combinations of coefficients of the Kronecker-Eisenstein series, and may be assembled into generating series. These relations are exploited to derive holomorphic subgraph reduction formulas, as well as algebraic and differential identities between eMGFs and their generating series. 
    more » « less
  7. null (Ed.)
    A bstract In an earlier paper, we constructed the genus-two amplitudes for five external massless states in Type II and Heterotic string theory, and showed that the α ′ expansion of the Type II amplitude reproduces the corresponding supergravity amplitude to leading order. In this paper, we analyze the effective interactions induced by Type IIB superstrings beyond supergravity, both for U(1) R -preserving amplitudes such as for five gravitons, and for U(1) R -violating amplitudes such as for one dilaton and four gravitons. At each order in α ′, the coefficients of the effective interactions are given by integrals over moduli space of genus-two modular graph functions, generalizing those already encountered for four external massless states. To leading and sub-leading orders, the coefficients of the effective interactions D 2 ℛ 5 and D 4 ℛ 5 are found to match those of D 4 ℛ 4 and D 6 ℛ 4 , respectively, as required by non-linear supersymmetry. To the next order, a D 6 ℛ 5 effective interaction arises, which is independent of the supersymmetric completion of D 8 ℛ 4 , and already arose at genus one. A novel identity on genus-two modular graph functions, which we prove, ensures that up to order D 6 ℛ 5 , the five-point amplitudes require only a single new modular graph function in addition to those needed for the four-point amplitude. We check that the supergravity limit of U(1) R -violating amplitudes is free of UV divergences to this order, consistently with the known structure of divergences in Type IIB supergravity. Our results give strong consistency tests on the full five-point amplitude, and pave the way for understanding S-duality beyond the BPS-protected sector. 
    more » « less