Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The ongoing COVID-19 pandemic underscores the importance of developing reliable forecasts that would allow decision makers to devise appropriate response strategies. Despite much recent research on the topic, epidemic forecasting remains poorly understood. Researchers have attributed the difficulty of forecasting contagion dynamics to a multitude of factors, including complex behavioral responses, uncertainty in data, the stochastic nature of the underlying process, and the high sensitivity of the disease parameters to changes in the environment. We offer a rigorous explanation of the difficulty of short-term forecasting on networked populations using ideas from computational complexity. Specifically, we show that several forecasting problemsmore »Free, publicly-accessible full text available January 25, 2023
-
Discrete dynamical systems serve as useful formal models to study diffusion phenomena in social networks. Motivated by applications in systems biology, several recent papers have studied algorithmic and complexity aspects of diffusion problems for dynamical systems whose underlying graphs are directed, and may contain directed cycles. Such problems can be regarded as reachability problems in the phase space of the corresponding dynamical system. We show that computational intractability results for reachability problems hold even for dynamical systems on directed acyclic graphs (dags). We also show that for dynamical systems on dags where each local function is monotone, the reachability problemmore »
-
Using a discrete dynamical system model for a networked social system, we consider the problem of learning a class of local interaction functions in such networks. Our focus is on learning local functions which are based on pairwise disjoint coalitions formed from the neighborhood of each node. Our work considers both active query and PAC learning models. We establish bounds on the number of queries needed to learn the local functions under both models. We also establish a complexity result regarding efficient consistent learners for such functions. Our experimental results on synthetic and real social networks demonstrate how the numbermore »
-
Using a discrete dynamical system model for a networked social system, we consider the problem of learning a class of local interaction functions in such networks. Our focus is on learning local functions which are based on pairwise disjoint coalitions formed from the neighborhood of each node. Our work considers both active query and PAC learning models. We establish bounds on the number of queries needed to learn the local functions under both models.We also establish a complexity result regarding efficient consistent learners for such functions. Our experimental results on synthetic and real social networks demonstrate how the number ofmore »