Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In this Letter, we unveil the high-temperature limits of N-polar GaN Schottky contacts enhanced by a low-pressure chemical vapor deposited (LPCVD) SiN interlayer. Compared to conventional Schottky diodes, the insertion of a 5 nm SiN lossy dielectric interlayer in-between Ni and N-polar GaN increases the turn-on voltage ( V ON ) from 0.4 to 0.9 V and the barrier height ( ϕ B ) from 0.4 to 0.8 eV. This modification also reduces the leakage current at zero bias significantly: at room temperature, the leakage current in the conventional Schottky diode is >10 3 larger than that observed in the device with the SiN interlayer, while at 200 °C, this ratio increases to 10 5 . Thus, the rectification ratio (I ON /I OFF ) at ±1.5 V reduces to less than one at 250 °C for the conventional Schottky diode, whereas for SiN-coated diodes, rectification continues until 500 °C. The I–V characteristics of the diode with an SiN interlayer can be recovered after exposure to 400 °C or lower. Contact degradation occurs at 500 °C, although devices are not destroyed yet. Here, we report N-polar GaN Schottky contact operation up to 500 °C using an LPCVD SiN interlayer.more » « less
-
Abstract We report on low resistivity (1.1 Ω cm) in p-type bulk doping of N-polar GaN grown by metalorganic chemical vapor deposition. High nitrogen chemical potential growth, facilitated by high process supersaturation, was instrumental in reducing the incorporation of compensating oxygen as well as nitrogen-vacancy-related point defects. This was confirmed by photoluminescence studies and temperature-dependent Hall effect measurements. The suppressed compensation led to an order of magnitude improvement in p-type conductivity with the room-temperature hole concentration and mobility measuring 6 × 10 17 cm −3 and 9 cm 2 V −1 s −1 , respectively. These results are paramount in the pathway towards N-polar GaN power and optoelectronic devices.more » « less
-
Abstract Process chemical potential control and dislocation reduction were implemented to control oxygen concentration in N-polar GaN layers grown on sapphire substrates via metal organic chemical vapor deposition (MOCVD). As process supersaturation was changed from ∼30 to 3400, the formation energy of the oxygen point defect increased, which resulted in a 25-fold decrease in oxygen incorporation. Reducing dislocations by approximately a factor of 4 (to ∼10 9 cm −3 ) allowed for further reduction of oxygen incorporation to the low-10 17 cm −3 range. Smooth N-polar GaN layers with low oxygen content were achieved by a two-step process, whereas first a 1 µ m thick smooth N-polar layer with high oxygen concentration was grown, followed by low oxygen concentration layer grown at high supersaturation.more » « less
-
Abstract Recent successful integration of semiconductors into spintronic THz emitters has demonstrated a new pathway of control over terahertz (THz) radiation through ultrafast demagnetization dynamics. Here, the spintronic THz emission from different ultrawide bandgap (UWBG) semiconductors interfaced with ferromagnets is studied. The authors show that the Schottky barrier in the UWBG semiconductor AlN acts as a spin filter that increases the polarization of the spin current injected from the ferromagnet. Furthermore, the authors show that the two‐dimensional electron gas at the interface between Al0.25Ga0.75N and GaN enhances the magnitude of the emitted radiation due to the high spin‐to‐charge conversion efficiency induced by the Rashba effect that results in a hallmark asymmetry in emission amplitude. The results provide a framework for future engineering of semiconducting/ferromagnet heterostructures for ultrafast communications technologies beyond 5G.