Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We study local filters for the Lipschitz property of real-valued functions f : V → [0,r], where the Lipschitz property is defined with respect to an arbitrary undirected graph G = (V, E ). We give nearly optimal local Lipschitz filters both with respect to ℓ1-distance and ℓ0-distance. Previous work only considered unbounded- range functions over [n]d. Jha and Raskhodnikova (SICOMP ‘13) gave an algorithm for such functions with lookup complexity exponential in d, which Awasthi et al. (ACM Trans. Comput. Theory) showed was necessary in this setting. We demonstrate that important applications of local Lipschitz filters can be accomplished with filters for functions whose range is bounded in [0,r]. For functions f : [n]d → [0,r], we achieve running time (dr log n )O (log r ) for the ℓ1-respecting filter and dO(r) polylog n for the ℓ0-respecting filter, thus circumventing the lower bound. Our local filters provide a novel Lipschitz extension that can be implemented locally. Furthermore, we show that our algorithms are nearly optimal in terms of the dependence on r for the domain {0,1}d, an important special case of the domain [n]d. In addition, our lower bound resolves an open question of Awasthi et al., removing one of the conditions necessary for their lower bound for general range. We prove our lower bound via a reduction from distribution-free Lipschitz testing and a new technique for proving hardness for adaptive algorithms. Finally, we provide two applications of our local filters to real-valued functions, with no restrictions on the range. In the first application, we use them in conjunction with the Laplace mechanism for differential privacy and noisy binary search to provide mechanisms for privately releasing outputs of black-box functions, even in the presence of malicious clients. In particular, our differentially private mechanism for arbitrary real-valued functions runs in time 2polylog min(r,nd ) and, for honest clients, has accuracy comparable to the Laplace mechanism for Lipschitz functions, up to a factor of O (log min(r,nd )). In the second application, we use our local filters to obtain the first nontrivial tolerant tester for the Lipschitz property. Our tester works for functions of the form f : {0,1}d → ℝ, makes queries, and has tolerance ratio 2.01. Our applications demonstrate that local filters for bounded-range functions can be applied to construct efficient algorithms for arbitrary real-valued functions.more » « lessFree, publicly-accessible full text available January 12, 2026
-
We study the problem of learning under arbitrary distribution shift, where the learner is trained on a labeled set from one distribution but evaluated on a different, potentially adversarially generated test distribution. We focus on two frameworks: PQ learning [GKKM'20], allowing abstention on adversarially generated parts of the test distribution, and TDS learning [KSV'23], permitting abstention on the entire test distribution if distribution shift is detected. All prior known algorithms either rely on learning primitives that are computationally hard even for simple function classes, or end up abstaining entirely even in the presence of a tiny amount of distribution shift. We address both these challenges for natural function classes, including intersections of halfspaces and decision trees, and standard training distributions, including Gaussians. For PQ learning, we give efficient learning algorithms, while for TDS learning, our algorithms can tolerate moderate amounts of distribution shift. At the core of our approach is an improved analysis of spectral outlier-removal techniques from learning with nasty noise. Our analysis can (1) handle arbitrarily large fraction of outliers, which is crucial for handling arbitrary distribution shifts, and (2) obtain stronger bounds on polynomial moments of the distribution after outlier removal, yielding new insights into polynomial regression under distribution shifts. Lastly, our techniques lead to novel results for tolerant testable learning [RV'23], and learning with nasty noise.more » « lessFree, publicly-accessible full text available December 10, 2025
-
We study truthful mechanisms for approximating the Maximin-Share (MMS) allocation of agents with additive valuations for indivisible goods. Algorithmically, constant factor approximations exist for the problem for any number of agents. When adding incentives to the mix, a jarring result by Amanatidis, Birmpas, Christodoulou, and Markakis [EC 2017] shows that the best possible approximation for two agents and m items is ⌊m2⌋. We adopt a learning-augmented framework to investigate what is possible when some prediction on the input is given. For two agents, we give a truthful mechanism that takes agents' ordering over items as prediction. When the prediction is accurate, we give a 2-approximation to the MMS (consistency), and when the prediction is off, we still get an ⌈m2⌉-approximation to the MMS (robustness). We further show that the mechanism's performance degrades gracefully in the number of mistakes" in the prediction; i.e., we interpolate (up to constant factors) between the two extremes: when there are no mistakes, and when there is a maximum number of mistakes. We also show an impossibility result on the obtainable consistency for mechanisms with finite robustness. For the general case of n≥2 agents, we give a 2-approximation mechanism for accurate predictions, with relaxed fallback guarantees. Finally, we give experimental results which illustrate when different components of our framework, made to insure consistency and robustness, come into play.more » « lessFree, publicly-accessible full text available December 10, 2025
-
A fundamental notion of distance between train and test distributions from the field of domain adaptation is discrepancy distance. While in general hard to compute, here we provide the first set of provably efficient algorithms for testing localized discrepancy distance, where discrepancy is computed with respect to a fixed output classifier. These results imply a broad set of new, efficient learning algorithms in the recently introduced model of Testable Learning with Distribution Shift (TDS learning) due to Klivans et al. (2023).Our approach generalizes and improves all prior work on TDS learning: (1) we obtain universal learners that succeed simultaneously for large classes of test distributions, (2) achieve near-optimal error rates, and (3) give exponential improvements for constant depth circuits. Our methods further extend to semi-parametric settings and imply the first positive results for low-dimensional convex sets. Additionally, we separate learning and testing phases and obtain algorithms that run in fully polynomial time at test time.more » « lessFree, publicly-accessible full text available December 10, 2025
-
We revisit the fundamental problem of learning with distribution shift, in which a learner is given labeled samples from training distribution D, unlabeled samples from test distribution D’ and is asked to output a classifier with low test error. The standard approach in this setting is to bound the loss of a classifier in terms of some notion of distance between D and D’. These distances, however, seem difficult to compute and do not lead to efficient algorithms. We depart from this paradigm and define a new model called testable learning with distribution shift, where we can obtain provably efficient algorithms for certifying the performance of a classifier on a test distribution. In this model, a learner outputs a classifier with low test error whenever samples from D and D’ pass an associated test; moreover, the test must accept (with high probability) if the marginal of D equals the marginal of D’. We give several positive results for learning well-studied concept classes such as halfspaces, intersections of halfspaces, and decision trees when the marginal of D is Gaussian or uniform on the hypercube. Prior to our work, no efficient algorithms for these basic cases were known without strong assumptions on D’. For halfspaces in the realizable case (where there exists a halfspace consistent with both D and D’), we combine a moment-matching approach with ideas from active learning to simulate an efficient oracle for estimating disagreement regions. To extend to the non-realizable setting, we apply recent work from testable (agnostic) learning. More generally, we prove that any function class with low-degree L2-sandwiching polynomial approximators can be learned in our model. Since we require L2- sandwiching (instead of the usual L1 loss), we cannot directly appeal to convex duality and instead apply constructions from the pseudorandomness literature to obtain the required approximators. We also provide lower bounds to show that the guarantees we obtain on the performance of our output hypotheses are best possible up to constant factors, as well as a separation showing that realizable learning in our model is incomparable to (ordinary) agnostic learning.more » « lessFree, publicly-accessible full text available June 30, 2025
-
We give the first efficient algorithm for learning halfspaces in the testable learning model recently defined by Rubinfeld and Vasilyan [2022]. In this model, a learner certifies that the accuracy of its output hypothesis is near optimal whenever the training set passes an associated test, and training sets drawn from some target distribution must pass the test. This model is more challenging than distribution-specific agnostic or Massart noise models where the learner is allowed to fail arbitrarily if the distributional assumption does not hold. We consider the setting where the target distribution is the standard Gaussian in dimensions and the label noise is either Massart or adversarial (agnostic). For Massart noise, our tester-learner runs in polynomial time and outputs a hypothesis with (information-theoretically optimal) error (and extends to any fixed strongly log-concave target distribution). For adversarial noise, our tester-learner obtains error in polynomial time. Prior work on testable learning ignores the labels in the training set and checks that the empirical moments of the covariates are close to the moments of the base distribution. Here we develop new tests of independent interest that make critical use of the labels and combine them with the moment-matching approach of Gollakota et al. [2022]. This enables us to implement a testable variant of the algorithm of Diakonikolas et al. [2020a, 2020b] for learning noisy halfspaces using nonconvex SGD.more » « less
-
We give the first agnostic, efficient, proper learning algorithm for monotone Boolean functions. Given 2O~(n√/ε) uniformly random examples of an unknown function f:{±1}n→{±1}, our algorithm outputs a hypothesis g:{±1}n→{±1} that is monotone and (opt +ε)-close to f, where opt is the distance from f to the closest monotone function. The running time of the algorithm (and consequently the size and evaluation time of the hypothesis) is also 2O~(n√/ε), nearly matching the lower bound of [13]. We also give an algorithm for estimating up to additive error ε the distance of an unknown function f to monotone using a run-time of 2O~(n√/ε). Previously, for both of these problems, sample-efficient algorithms were known, but these algorithms were not run-time efficient. Our work thus closes this gap in our knowledge between the run-time and sample complexity.This work builds upon the improper learning algorithm of [17] and the proper semiagnostic learning algorithm of [40], which obtains a non-monotone Boolean-valued hypothesis, then “corrects” it to monotone using query-efficient local computation algorithms on graphs. This black-box correction approach can achieve no error better than 2 opt +ε information-theoretically; we bypass this barrier bya)augmenting the improper learner with a convex optimization step, andb)learning and correcting a real-valued function before rounding its values to Boolean. Our real-valued correction algorithm solves the “poset sorting” problem of [40] for functions over general posets with non-Boolean labels.more » « less
-
We give the first tester-learner for halfspaces that succeeds universally over a wide class of structured distributions. Our universal tester-learner runs in fully polynomial time and has the following guarantee: the learner achieves error O(opt)+ϵ on any labeled distribution that the tester accepts, and moreover, the tester accepts whenever the marginal is any distribution that satisfies a Poincare inequality. In contrast to prior work on testable learning, our tester is not tailored to any single target distribution but rather succeeds for an entire target class of distributions. The class of Poincare distributions includes all strongly log-concave distributions, and, assuming the Kannan--Lovasz--Simonovits (KLS) conjecture, includes all log-concave distributions. In the special case where the label noise is known to be Massart, our tester-learner achieves error opt+ϵ while accepting all log-concave distributions unconditionally (without assuming KLS).Our tests rely on checking hypercontractivity of the unknown distribution using a sum-of-squares (SOS) program, and crucially make use of the fact that Poincare distributions are certifiably hypercontractive in the SOS framework.more » « less
-
There are many important high dimensional function classes that have fast agnostic learning algorithms when strong assumptions on the distribution of examples can be made, such as Gaussianity or uniformity over the domain. But how can one be sufficiently confident that the data indeed satisfies the distributional assumption, so that one can trust in the output quality of the agnostic learning algorithm? We propose a model by which to systematically study the design of tester-learner pairs (A,T), such that if the distribution on examples in the data passes the tester T then one can safely trust the output of the agnostic learner A on the data. To demonstrate the power of the model, we apply it to the classical problem of agnostically learning halfspaces under the standard Gaussian distribution and present a tester-learner pair with a combined run-time of nÕ(1/є4). This qualitatively matches that of the best known ordinary agnostic learning algorithms for this task. In contrast, finite sample Gaussian distribution testers do not exist for the L1 and EMD distance measures. Previously it was known that half-spaces are well-approximated with low-degree polynomials relative to the Gaussian distribution. A key step in our analysis is showing that this is the case even relative to distributions whose low-degree moments approximately match those of a Gaussian. We also go beyond spherically-symmetric distributions, and give a tester-learner pair for halfspaces under the uniform distribution on {0,1}n with combined run-time of nÕ(1/є4). This is achieved using polynomial approximation theory and critical index machinery of [Diakonikolas, Gopalan, Jaiswal, Servedio, and Viola 2009]. Can one design agnostic learning algorithms under distributional assumptions and count on future technical work to produce, as a matter of course, tester-learner pairs with similar run-time? Our answer is a resounding no, as we show there exist some well-studied settings for which 2Õ(√n) run-time agnostic learning algorithms are available, yet the combined run-times of tester-learner pairs must be as high as 2Ω(n). On that account, the design of tester-learner pairs is a research direction in its own right independent of standard agnostic learning. To be specific, our lower bounds apply to the problems of agnostically learning convex sets under the Gaussian distribution and for monotone Boolean functions under the uniform distribution over {0,1}n.more » « less