skip to main content


Search for: All records

Creators/Authors contains: "Wajc, David"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present dynamic algorithms withpolylogarithmicupdate time for estimating the size of the maximum matching of a graph undergoing edge insertions and deletions with approximation ratiostrictly better than 2. Specifically, we obtain a\(1+\frac{1}{\sqrt {2}}+\epsilon \approx 1.707+\epsilon \)approximation in bipartite graphs and a 1.973 + ϵ approximation in general graphs. We thus answer in the affirmative the value version of the major open question repeatedly asked in the dynamic graph algorithms literature. Our randomized algorithms’ approximation and worst-case update time bounds both hold w.h.p. against adaptive adversaries.

    Our algorithms are based on simulating new two-pass streaming matching algorithms in the dynamic setting. Our key new idea is to invoke the recent sublinear-time matching algorithm of Behnezhad (FOCS’21) in a white-box manner to efficiently simulate the second pass of our streaming algorithms, while bypassing the well-known vertex-update barrier.

     
    more » « less
    Free, publicly-accessible full text available July 23, 2025
  2. Free, publicly-accessible full text available June 10, 2025
  3. Kumar, Amit ; Ron-Zewi, Noga (Ed.)
    We initiate the study of centralized algorithms for welfare-maximizing allocation of goods to buyers subject to average-value constraints. We show that this problem is NP-hard to approximate beyond a factor of e/(e-1), and provide a 4e/(e-1)-approximate offline algorithm. For the online setting, we show that no non-trivial approximations are achievable under adversarial arrivals. Under i.i.d. arrivals, we present a polytime online algorithm that provides a constant approximation of the optimal (computationally-unbounded) online algorithm. In contrast, we show that no constant approximation of the ex-post optimum is achievable by an online algorithm. 
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  4. null (Ed.)
    Many distributed optimization algorithms achieve existentially-optimal running times, meaning that there exists some pathological worst-case topology on which no algorithm can do better. Still, most networks of interest allow for exponentially faster algorithms. This motivates two questions: (i) What network topology parameters determine the complexity of distributed optimization? (ii) Are there universally-optimal algorithms that are as fast as possible on every topology? We resolve these 25-year-old open problems in the known-topology setting (i.e., supported CONGEST) for a wide class of global network optimization problems including MST, (1+є)-min cut, various approximate shortest paths problems, sub-graph connectivity, etc. In particular, we provide several (equivalent) graph parameters and show they are tight universal lower bounds for the above problems, fully characterizing their inherent complexity. Our results also imply that algorithms based on the low-congestion shortcut framework match the above lower bound, making them universally optimal if shortcuts are efficiently approximable. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
  7. In a recent breakthrough, Paz and Schwartzman (SODA'17) presented a single-pass (2+epsilon)-approximation algorithm for the maximum weight matching problem in the semi-streaming model. Their algorithm uses O(n log^2 n) bits of space, for any constant epsilon>0. We present a simplified and more intuitive primal-dual analysis, for essentially the same algorithm, which also improves the space complexity to the optimal bound of O(n log n) bits - this is optimal as the output matching requires Omega(n log n) bits. 
    more » « less
  8. Vizing’s celebrated theorem asserts that any graph of maximum degree ∆ admits an edge coloring using at most ∆ + 1 colors. In contrast, Bar-Noy, Motwani and Naor showed over a quarter century ago that the trivial greedy algorithm, which uses 2∆−1 colors, is optimal among online algorithms. Their lower bound has a caveat, however: it only applies to lowdegree graphs, with ∆ = O(log n), and they conjectured the existence of online algorithms using ∆(1 + o(1)) colors for ∆ = ω(log n). Progress towards resolving this conjecture was only made under stochastic arrivals (Aggarwal et al., FOCS’03 and Bahmani et al., SODA’10). We resolve the above conjecture for adversarial vertex arrivals in bipartite graphs, for which we present a (1+o(1))∆-edge-coloring algorithm for ∆ = ω(log n) known a priori. Surprisingly, if ∆ is not known ahead of time, we show that no (e/(e−1)−Ω(1))∆-edge-coloring algorithm exists.We then provide an optimal, (e/(e−1) +o(1))∆-edge-coloring algorithm for unknown ∆ = ω(log n). Key to our results, and of possible independent interest, is a novel fractional relaxation for edge coloring, for which we present optimal fractional online algorithms and a near-lossless online rounding scheme, yielding our optimal randomized algorithms. 
    more » « less
  9. The online matching problem was introduced by Karp, Vazirani and Vazirani nearly three decades ago. In that seminal work, they studied this problem in bipartite graphs with vertices arriving only on one side, and presented optimal deterministic and randomized algorithms for this setting. In comparison, more general arrival models, such as edge arrivals and general vertex arrivals, have proven more challenging, and positive results are known only for various relaxations of the problem. In particular, even the basic question of whether randomization allows one to beat the trivially-optimal deterministic competitive ratio of 1/2 for either of these models was open. In this paper, we resolve this question for both these natural arrival models, and show the following. For edge arrivals, randomization does not help | no randomized algorithm is better than 1/2 competitive. For general vertex arrivals, randomization helps | there exists a randomized (1/2+ Ω(1))-competitive online matching algorithm. 
    more » « less