skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Waryoba, Daudi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Traditional defect recovery methods rely on high-temperature annealing, often exceeding 750 °C for FeCrAl. In this study, we introduce electron wind force (EWF)-assisted annealing as an alternative approach to mitigate irradiation-induced defects at significantly lower temperatures. FeCrAl samples irradiated with 5 MeV Zr2+ ions at a dose of 1014 cm−2 were annealed using EWF at 250 °C for 60 s. We demonstrate a remarkable transformation in the irradiated microstructure, where significant increases in kernel average misorientation (KAM) and low-angle grain boundaries (LAGBs) typically indicate heightened defect density; the use of EWF annealing reversed these effects. X-ray diffraction (XRD) confirmed these findings, showing substantial reductions in full width at half maximum (FWHM) values and a realignment of peak positions toward their original states, indicative of stress and defect recovery. To compare the effectiveness of EWF, we also conducted traditional thermal annealing at 250 °C for 7 h, which proved less effective in defect recovery as evidenced by less pronounced improvements in XRD FWHM values. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. Free, publicly-accessible full text available September 1, 2025
  3. This study investigates the effectiveness of combined thermal and athermal stimuli in mitigating the extremely high-density nature of dislocation networks in the form of low-angle grain boundaries in FeCrAl alloy. Electron wind force, generated from very low duty cycle and high current density pulses, was used as the athermal stimulus. The electron wind force stimulus alone was unable to remove the residual stress (80% low-angle grain boundaries) due to cold rolling to 25% thickness reduction. When the duty cycle was increased to allow average temperature of 100 °C, the specimen could be effectively annealed in 1 min at a current density of 3300 A/mm2. In comparison, conventional thermal annealing requires at least 750 °C and 1.5 h. For specimens with 50% thickness reduction (85% low-angle grain boundaries), the electron wind force was again unable to anneal the defects even at 3300 A/mm2 current density and average temperature of 100 °C. Intriguingly, allowing average concurrent temperature of 200 °C eliminated almost all the low-angle grain boundaries at a current density of 700 A/mm2, even lower than that required for the 25% thickness reduced specimens. Comprehensive electron and X-ray diffraction evidence show that alloys with extremely high defect density can be effectively annealed in less than a minute at approximately 200 °C, offering a substantial improvement over conventional high-temperature annealing. 
    more » « less
    Free, publicly-accessible full text available July 1, 2025
  4. Low-angle grain boundaries (LAGBs) accommodate residual stress through the rearrangement and accumulation of dislocations during cold rolling. This study presents an electron wind force-based annealing approach to recover cold-rolling induced residual stress in FeCrAl alloy below 100 °C in 1 min. This is significantly lower than conventional thermal annealing, which typically requires temperatures around 750 °C for about 1.5 h. A key feature of our approach is the athermal electron wind force effect, which promotes dislocation movement and stress relief at significantly lower temperatures. The electron backscattered diffraction (EBSD) analysis reveals that the concentration of low-angle grain boundaries (LAGBs) is reduced from 82.4% in the cold-rolled state to a mere 47.5% following electropulsing. This level of defect recovery even surpasses the pristine material’s initial state, which exhibited 54.8% LAGBs. This reduction in LAGB concentration was complemented by kernel average misorientation (KAM) maps and X-ray diffraction (XRD) Full Width at Half Maximum (FWHM) measurements, which further validated the microstructural enhancements. Nanoindentation tests revealed a slight increase in hardness despite the reduction in dislocation density, suggesting a balance between grain boundary refinement and dislocation dynamics. This proposed low-temperature technique, driven by athermal electron wind forces, presents a promising avenue for residual stress mitigation while minimizing undesirable thermal effects, paving the way for advancements in various material processing applications. 
    more » « less
  5. Abstract Traditional approaches to control the microstructure of materials, such as annealing, require high temperature treatment for long periods of time. In this study, we present a room temperature microstructure manipulation method by using the mechanical momentum of electrical current pulses. In particular, a short burst of high-density current pulses with low duty cycle is applied to an annealed FeCrAl alloy, and the corresponding response of microstructure is captured by using Electron Backscattered Diffraction (EBSD) analysis. We show evidence of controllable changes in grain orientation at specimen temperature around 28 °C. To demonstrate such microstructural control, we apply the current pulses in two perpendicular directions and observe the corresponding grain rotation. Up to 18° of grain rotation was observed, which could be reversed by varying the electropulsing direction. Detailed analysis at the grain level reveals that electropulsing in a specific direction induces clockwise rotation from their pristine state, while subsequent cross-perpendicular electropulsing results in an anticlockwise rotation. In addition, our proposed room temperature processing yields notable grain refinement, while the average misorientation and density of low-angle grain boundaries (LAGBs) remain unaltered. The findings of this study highlight the potentials of ‘convective diffusion’ in electrical current based materials processing science towards microstructural control at room temperature. 
    more » « less
  6. Cold sintering of surface‐modified iron compacts results in a co‐continuous phosphate interphase between iron particles that provide both enhanced green strength and green density similar to the process that has been successfully introduced in low‐temperature densification of ceramic materials. Relative density as high as 95% along with transverse rupture strength of ≈ 75 MPa, which is almost six times that of conventional powdered metal iron compact and 2.5 times that of warm compacted controls, is achieved. Dilatometry study at different pressures shows a small but significant improvement in densification process during cold sintering relative to the larger densification of warm compacted control. Strength model based on microstructural analysis as well as in situ diffused reflectance infrared Fourier transform spectroscopy (DRIFTS) experiments reveals the nature of the interphase that imparts the large cohesive strength under the cold sintered assisted warm compaction. The process is conducive to produce iron compacts for green machining. Furthermore, the samples when subjected to high‐temperature sintering yield a fully sintered iron compact with density > 7.2 g cm−3and transverse rupture strength as high as 780 MPa. All in all, there are major new opportunities with the cold sintered assisted warm compaction of powdered metals that will also be discussed. 
    more » « less
  7. null (Ed.)