Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available March 20, 2026
-
Studies of moiré systems have explained the effect of superlattice modulations on their properties, demonstrating new correlated phases. However, most experimental studies have focused on a few layers in two-dimensional systems. Extending twistronics to three dimensions, in which the twist extends into the third dimension, remains underexplored because of the challenges associated with the manual stacking of layers. Here we study three-dimensional twistronics using a self-assembled twisted spiral superlattice of multilayered WS2. Our findings show an opto-twistronic Hall effect driven by structural chirality and coherence length, modulated by the moiré potential of the spiral superlattice. This is an experimental manifestation of the noncommutative geometry of the system. We observe enhanced light–matter interactions and an altered dependence of the Hall coefficient on photon momentum. Our model suggests contributions from higher-order quantum geometric quantities to this observation, providing opportunities for designing quantum-materials-based optoelectronic lattices with large nonlinearities.more » « lessFree, publicly-accessible full text available October 3, 2025
-
Ever since the discovery of the charge density wave (CDW) transition in the kagome metal , the nature of its symmetry breaking has been under intense debate. While evidence suggests that the rotational symmetry is already broken at the CDW transition temperature ( ), an additional electronic nematic instability well below has been reported based on the diverging elastoresistivity coefficient in the anisotropic channel ( ). Verifying the existence of a nematic transition below is not only critical for establishing the correct description of the CDW order parameter, but also important for understanding low-temperature superconductivity. Here, we report elastoresistivity measurements of using three different techniques probing both isotropic and anisotropic symmetry channels. Contrary to previous reports, we find the anisotropic elastoresistivity coefficient is temperature independent, except for a step jump at . The absence of nematic fluctuations is further substantiated by measurements of the elastocaloric effect, which show no enhancement associated with nematic susceptibility. On the other hand, the symmetric elastoresistivity coefficient increases below , reaching a peak value of 90 at . Our results strongly indicate that the phase transition at is not nematic in nature and the previously reported diverging elastoresistivity is due to the contamination from the channel. Published by the American Physical Society2024more » « less
-
Uniaxial strain has been widely used as a powerful tool for investigating and controlling the properties of quantum materials. However, existing strain techniques have so far mostly been limited to use with bulk crystals. Although recent progress has been made in extending the application of strain to two-dimensional van der Waals (vdW) heterostructures, these techniques have been limited to optical characterization and extremely simple electrical device geometries. Here, we report a piezoelectric-based in situ uniaxial strain technique enabling simultaneous electrical transport and optical spectroscopy characterization of dual-gated vdW heterostructure devices. Critically, our technique remains compatible with vdW heterostructure devices of arbitrary complexity fabricated on conventional silicon/silicon dioxide wafer substrates. We demonstrate a large and continuously tunable strain of up to −0.15% at millikelvin temperatures, with larger strain values also likely achievable. We quantify the strain transmission from the silicon wafer to the vdW heterostructure, and further demonstrate the ability of strain to modify the electronic properties of twisted bilayer graphene. Our technique provides a highly versatile new method for exploring the effect of uniaxial strain on both the electrical and optical properties of vdW heterostructures and can be easily extended to include additional characterization techniques.more » « less
-
Abstract Niobium chloride (Nb3Cl8) is a layered two-dimensional semiconducting material with many exotic properties including a breathing kagome lattice, a topological flat band in its band structure, and a crystal structure that undergoes a structural and magnetic phase transition at temperatures below 90 K. Despite being a remarkable material with fascinating new physics, the understanding of its phonon properties is at its infancy. In this study, we investigate the phonon dynamics of Nb3Cl8in bulk and few layer flakes using polarized Raman spectroscopy and density-functional theory (DFT) analysis to determine the material’s vibrational modes, as well as their symmetrical representations and atomic displacements. We experimentally resolved 12 phonon modes, five of which areA1gmodes while the remaining seven areEgmodes, which is in strong agreement with our DFT calculation. Layer-dependent results suggest that the Raman peak positions are mostly insensitive to changes in layer thickness, while peak intensity and full width at half maximum are affected. Raman measurements as a function of excitation wavelength (473–785 nm) show a significant increase of the peak intensities when using a 473 nm excitation source, suggesting a near resonant condition. Temperature-dependent Raman experiments carried out above and below the transition temperature did not show any change in the symmetries of the phonon modes, suggesting that the structural phase transition is likely from the high temperatureP 1 phase to the low-temperatureR phase. Magneto-Raman measurements carried out at 140 and 2 K between −2 and 2 T show that the Raman modes are not magnetically coupled. Overall, our study presented here significantly advances the fundamental understanding of layered Nb3Cl8material which can be further exploited for future applications.more » « less
-
Abstract Kagome materials have become solid grounds to study the interplay among geometry, topology, correlation, and magnetism. Recently, niobium halide semiconductors Nb 3 X 8 ( X = Cl, Br, I) have been predicted to be two-dimensional magnets and these materials are also interesting for their breathing kagome geometry. However, experimental electronic structure studies of these promising materials are still lacking. Here, we report the spectroscopic evidence of flat and weakly dispersing bands in breathing-kagome semiconductor Nb 3 I 8 around 500 meV binding energy, which is well supported by our first-principles calculations. These bands originate from the breathing kagome lattice of niobium atoms and have niobium d -orbital character. They are found to be sensitive to the polarization of the incident photon beam. Our study provides insight into the electronic structure and flat band topology in an exfoliable kagome semiconductor, thereby providing an important platform to understand the interaction of geometry and electron correlations in two-dimensional materials.more » « less