skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00PM ET on Friday, December 15 until 2:00 AM ET on Saturday, December 16 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Zhou, Boyang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Time-Sensitive Networking (TSN) is designed for real-time applications, usually pertaining to a set of Time-Triggered (TT) data flows. TT traffic generally requires low packet loss and guaranteed upper bounds on end-to-end delay. To guarantee the end-to-end delay bounds, TSN uses Time-Aware Shaper (TAS) to provide deterministic service to TT flows. Each frame of TT traffic is scheduled a specific time slot at each switch for its transmission. Several factors may influence frame transmissions, which then impact the scheduling in the whole network. These factors may cause frames sent in wrong time slots, namely misbehaviors. To mitigate the occurrence of misbehaviors, we need to find proper scheduling for the whole network. In our research, we use a reinforcement-learning model, which is called Deep Deterministic Policy Gradient (DDPG), to find the suitable scheduling. DDPG is used to model the uncertainty caused by the transmission-influencing factors such as time-synchronization errors. Compared with the state of the art, our approach using DDPG significantly decreases the number of misbehaviors in TSN scenarios studied and improves the delay performance of the network. 
    more » « less
  2. null (Ed.)
    AFDX (Avionics Full Duplex Switched Ethernet) is developed to support mission-critical communications while providing deterministic Quality of Service (QoS) across cyber-physical avionics systems. Currently, AFDX utilizes FP/FIFO QoS mechanisms to guarantee its real-time performance. To analyze the real-time performance of avionic systems in their design processes, existing work analyzes the deterministic delay bound of AFDX using NC (Network Calculus). However, existing analytical work is based on an unrealistic assumption leading to assumed worst cases that may not be achievable in reality. In this paper, we present a family of algorithms that can search for realistic worst-case delay scenarios in both preemptive and non-preemptive situations. Then we integrate the proposed algorithms with NC and apply our approach to analyzing tandem AFDX networks. Our reality-conforming approach yields tighter delay bound estimations than the state of the art. When there are 100 virtual links in AFDX networks, our method can provide delay bounds more than 25% tighter than those calculated by the state of the art in our evaluation. Moreover, when using our reality-conforming method in the design process, it leads to 27.2% increase in the number of virtual links accommodated by the network in the tandem scenario. 
    more » « less
  3. Bursts of 16 femtosecond laser pulses are generated in a fourfold Michelson interferometer with a tunable delay and envelope. Solutions are given to solve the “forward problem” (bursts from a given parameter set) and “inverse problem” (obtain parameter set from a given burst). Three types of bursts are generated experimentally with envelopes suitable for applications in laser materials processing and the generation of terahertz radiation.

    more » « less
  4. We demonstrate a method of laser ablation with reduced feature size by using a pair of ultrashort pulses that are partially overlapped in space. By tuning the delay between the two pulses, features within the overlapping area are obtained on the surface of fused silica. The observed dependence of the feature position on delays longer than the free-carrier lifetime indicates an ionization pathway initiated by self-trapped excitons. This method could be used to enhance the resolution of laser-based lithography.

    more » « less
  5. null (Ed.)
  6. null (Ed.)