skip to main content

Search for: All records

Creators/Authors contains: "Zrnic, Tijana"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
    As predictive models are deployed into the real world, they must increasingly contend with strategic behavior. A growing body of work on strategic classification treats this problem as a Stackelberg game: the decision-maker "leads" in the game by deploying a model, and the strategic agents "follow" by playing their best response to the deployed model. Importantly, in this framing, the burden of learning is placed solely on the decision-maker, while the agents' best responses are implicitly treated as instantaneous. In this work, we argue that the order of play in strategic classification is fundamentally determined by the relative frequencies at which the decision-maker and the agents adapt to each other's actions. In particular, by generalizing the standard model to allow both players to learn over time, we show that a decision-maker that makes updates faster than the agents can reverse the order of play, meaning that the agents lead and the decision-maker follows. We observe in standard learning settings that such a role reversal can be desirable for both the decision-maker and the strategic agents. Finally, we show that a decision-maker with the freedom to choose their update frequency can induce learning dynamics that converge to Stackelberg equilibria with either order of play. 
    more » « less
  3. null (Ed.)
    We consider the problem of asynchronous online testing, aimed at providing control of the false discovery rate (FDR) during a continual stream of data collection and testing, where each test may be a sequential test that can start and stop at arbitrary times. This setting increasingly characterizes real-world applications in science and industry, where teams of researchers across large organizations may conduct tests of hypotheses in a decentralized manner. The overlap in time and space also tends to induce dependencies among test statistics, a challenge for classical methodology, which either assumes (overly optimistically) independence or (overly pessimistically) arbitrary dependence between test statistics. We present a general framework that addresses both of these issues via a unified computational abstraction that we refer to as “conflict sets.” We show how this framework yields algorithms with formal FDR guarantees under a more intermediate, local notion of dependence. We illustrate our algorithms in simulations by comparing to existing algorithms for online FDR control. 
    more » « less
  4. null (Ed.)
    One important partition of algorithms for controlling the false discovery rate (FDR) in multiple testing is into offline and online algorithms. The first generally achieve significantly higher power of discovery, while the latter allow making decisions sequentially as well as adaptively formulating hypotheses based on past observations. Using existing methodology, it is unclear how one could trade off the benefits of these two broad families of algorithms, all the while preserving their formal FDR guarantees. To this end, we introduce Batch-BH and Batch-St-BH, algorithms for controlling the FDR when a possibly infinite sequence of batches of hypotheses is tested by repeated application of one of the most widely used offline algorithms, the Benjamini-Hochberg (BH) method or Storey’s improvement of the BH method. We show that our algorithms interpolate between existing online and offline methodology, thus trading off the best of both worlds. 
    more » « less
  5. null (Ed.)
    When predictions support decisions they may influence the outcome they aim to predict. We call such predictions performative; the prediction influences the target. Performativity is a well-studied phenomenon in policy-making that has so far been neglected in supervised learning. When ignored, performativity surfaces as undesirable distribution shift, routinely addressed with retraining. We develop a risk minimization framework for performative prediction bringing together concepts from statistics, game theory, and causality. A conceptual novelty is an equilibrium notion we call performative stability. Performative stability implies that the predictions are calibrated not against past outcomes, but against the future outcomes that manifest from acting on the prediction. Our main results are necessary and sufficient conditions for the convergence of retraining to a performatively stable point of nearly minimal loss. In full generality, performative prediction strictly subsumes the setting known as strategic classification. We thus also give the first sufficient conditions for retraining to overcome strategic feedback effects. 
    more » « less
  6. null (Ed.)
    In performative prediction, the choice of a model influences the distribution of future data, typically through actions taken based on the model's predictions. We initiate the study of stochastic optimization for performative prediction. What sets this setting apart from traditional stochastic optimization is the difference between merely updating model parameters and deploying the new model. The latter triggers a shift in the distribution that affects future data, while the former keeps the distribution as is. Assuming smoothness and strong convexity, we prove rates of convergence for both greedily deploying models after each stochastic update (greedy deploy) as well as for taking several updates before redeploying (lazy deploy). In both cases, our bounds smoothly recover the optimal O(1/k) rate as the strength of performativity decreases. Furthermore, they illustrate how depending on the strength of performative effects, there exists a regime where either approach outperforms the other. We experimentally explore the trade-off on both synthetic data and a strategic classification simulator. 
    more » « less