skip to main content


Search for: All records

Creators/Authors contains: "Si, Jennie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Healthy human locomotion functions with good gait symmetry depend on rhythmic coordination of the left and right legs, which can be deteriorated by neurological disorders like stroke and spinal cord injury. Powered exoskeletons are promising devices to improve impaired people's locomotion functions, like gait symmetry. However, given higher uncertainties and the time-varying nature of human-robot interaction, providing personalized robotic assistance from exoskeletons to achieve the best gait symmetry is challenging, especially for people with neurological disorders. In this paper, we propose a hierarchical control framework for a bilateral hip exoskeleton to provide the adaptive optimal hip joint assistance with a control objective of imposing the desired gait symmetry during walking. Three control levels are included in the hierarchical framework, including the high-level control to tune three control parameters based on a policy iteration reinforcement learning approach, the middle-level control to define the desired assistive torque profile based on a delayed output feedback control method, and the low-level control to achieve a good torque trajectory tracking performance. To evaluate the feasibility of the proposed control framework, five healthy young participants are recruited for treadmill walking experiments, where an artificial gait asymmetry is imitated as the hemiparesis post-stroke, and only the ‘paretic’ hip joint is controlled with the proposed framework. The pilot experimental studies demonstrate that the hierarchical control framework for the hip exoskeleton successfully (asymmetry index from 8.8% to − 0.5%) and efficiently (less than 4 minutes) achieved the desired gait symmetry by providing adaptive optimal assistance on the ‘paretic’ hip joint. 
    more » « less
    Free, publicly-accessible full text available October 1, 2024
  2. null (Ed.)