skip to main content


Search for: All records

Award ID contains: 2048044

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 1, 2024
  2. Free, publicly-accessible full text available July 1, 2024
  3. Free, publicly-accessible full text available May 1, 2024
  4. Free, publicly-accessible full text available May 1, 2024
  5. Free, publicly-accessible full text available May 1, 2024
  6. The interaction and dimension of points are two important axes in designing point operators to serve hierarchical 3D models. Yet, these two axes are heterogeneous and challenging to fully explore. Existing works craft point operator under a single axis and reuse the crafted operator in all parts of 3D models. This overlooks the opportunity to better combine point interactions and dimensions by exploiting varying geometry/density of 3D point clouds. In this work, we establish PIDS, a novel paradigm to jointly explore point interactions and point dimensions to serve semantic segmentation on point cloud data. We establish a large search space to jointly consider versatile point interactions and point dimensions. This supports point operators with various geometry/density considerations. The enlarged search space with heterogeneous search components calls for a better ranking of candidate models. To achieve this, we improve the search space exploration by leveraging predictor-based Neural Architecture Search (NAS), and enhance the quality of prediction by assigning unique encoding to heterogeneous search components based on their priors. We thoroughly evaluate the networks crafted by PIDS on two semantic segmentation benchmarks, showing ∼ 1% mIOU improvement on SemanticKITTI and S3DIS over state-of-the-art 3D models. 
    more » « less
  7. Serverless computing is gaining popularity for machine learning (ML) serving workload due to its autonomous resource scaling, easy to use and pay-per-use cost model. Existing serverless platforms work well for image-based ML inference, where requests are homogeneous in service demands. That said, recent advances in natural language processing could not fully benefit from existing serverless platforms as their requests are intrinsically heterogeneous. Batching requests for processing can significantly increase ML serving efficiency while reducing monetary cost, thanks to the pay-per-use pricing model adopted by serverless platforms. Yet, batching heterogeneous ML requests leads to additional computation overhead as small requests need to be "padded" to the same size as large requests within the same batch. Reaching effective batching decisions (i.e., which requests should be batched together and why) is non-trivial: the padding overhead coupled with the serverless auto-scaling forms a complex optimization problem. To address this, we develop Multi-Buffer Serving (MBS), a framework that optimizes the batching of heterogeneous ML inference serving requests to minimize their monetary cost while meeting their service level objectives (SLOs). The core of MBS is a performance and cost estimator driven by analytical models supercharged by a Bayesian optimizer. MBS is prototyped and evaluated on AWS using bursty workloads. Experimental results show that MBS preserves SLOs while outperforming the state-of-the-art by up to 8 x in terms of cost savings while minimizing the padding overhead by up to 37 x with 3 x less number of serverless function invocations. 
    more » « less