skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2211260

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Classifier-free guidance (CFG) is a key technique for improving conditional generation in diffusion models, enabling more accurate control while enhancing sample quality. It is natural to extend this technique to video diffusion, which generates video conditioned on a variable number of context frames, collectively referred to as history. However, we find two key challenges to guiding with variable-length history: architectures that only support fixed-size conditioning, and the empirical observation that CFG-style history dropout performs poorly. To address this, we propose the Diffusion Forcing Transformer (DFoT), a video diffusion architecture and theoretically grounded training objective that jointly enable conditioning on a flexible number of history frames. We then introduce History Guidance, a family of guidance methods uniquely enabled by DFoT. We show that its simplest form, vanilla history guidance, already significantly improves video generation quality and temporal consistency. A more advanced method, history guidance across time and frequency further enhances motion dynamics, enables compositional generalization to out-of-distribution history, and can stably roll out extremely long videos. 
    more » « less
    Free, publicly-accessible full text available July 17, 2026
  2. Free, publicly-accessible full text available March 25, 2026
  3. This paper presents Diffusion Forcing, a new training paradigm where a diffusion model is trained to denoise a set of tokens with independent per-token noise levels. We apply Diffusion Forcing to sequence generative modeling by training a causal next-token prediction model to generate one or several future tokens without fully diffusing past ones. Our approach is shown to combine the strengths of next-token prediction models, such as variable-length generation, with the strengths of full-sequence diffusion models, such as the ability to guide sampling to desirable trajectories. Our method offers a range of additional capabilities, such as (1) rolling-out sequences of continuous tokens, such as video, with lengths past the training horizon, where baselines diverge and (2) new sampling and guiding schemes that uniquely profit from Diffusion Forcing's variable-horizon and causal architecture, and which lead to marked performance gains in decision-making and planning tasks. In addition to its empirical success, our method is proven to optimize a variational lower bound on the likelihoods of all subsequences of tokens drawn from the true joint distribution. 
    more » « less
  4. We introduce pixelSplat, a feed-forward model that learns to reconstruct 3D radiance fields parameterized by 3D Gaussian primitives from pairs of images. Our model features real-time and memory-efficient rendering for scalable training as well as fast 3D reconstruction at inference time. To overcome local minima inherent to sparse and locally supported representations, we predict a dense probability distribution over 3D and sample Gaussian means from that probability distribution. We make this sampling operation differentiable via a reparameterization trick, allowing us to back-propagate gradients through the Gaussian splatting representation. We benchmark our method on wide-baseline novel view synthesis on the real-world RealEstate10k and ACID datasets, where we outperform state-of-the-art light field transformers and accelerate rendering by 2.5 orders of magnitude while reconstructing an interpretable and editable 3D radiance field. 
    more » « less
  5. We introduce pixelSplat, a feed-forward model that learns to reconstruct 3D radiance fields parameterized by 3D Gaussian primitives from pairs of images. Our model features real-time and memory-efficient rendering for scalable training as well as fast 3D reconstruction at inference time. To overcome local minima inherent to sparse and locally supported representations, we predict a dense probability distribution over 3D and sample Gaussian means from that probability distribution. We make this sampling operation differentiable via a reparameterization trick, allowing us to back-propagate gradients through the Gaussian splatting representation. We benchmark our method on wide-baseline novel view synthesis on the real-world RealEstate10k and ACID datasets, where we outperform state-of-the-art light field transformers and accelerate rendering by 2.5 orders of magnitude while reconstructing an interpretable and editable 3D radiance field. 
    more » « less
  6. Denoising diffusion models have emerged as a powerful class of generative models capable of capturing the distributions of complex, real-world signals. However, current approaches can only model distributions for which training samples are directly accessible, which is not the case in many real-world tasks. In inverse graphics, for instance, we seek to sample from a distribution over 3D scenes consistent with an image but do not have access to ground-truth 3D scenes, only 2D images. We present a new class of denoising diffusion probabilistic models that learn to sample from distributions of signals that are never observed directly, but instead are only measured through a known differentiable forward model that generates partial observations of the unknown signal. To accomplish this, we directly integrate the forward model into the denoising process. At test time, our approach enables us to sample from the distribution over underlying signals consistent with some partial observation. We demonstrate the efficacy of our approach on three challenging computer vision tasks. For instance, in inverse graphics, we demonstrate that our model enables us to directly sample from the distribution 3D scenes consistent with a single 2D input image. 
    more » « less
  7. Reconstruction of 3D neural fields from posed images has emerged as a promising method for self-supervised representation learning. The key challenge preventing the deployment of these 3D scene learners on large-scale video data is their dependence on precise camera poses from structure-from-motion, which is prohibitively expensive to run at scale. We propose a method that jointly reconstructs camera poses and 3D neural scene representations online and in a single forward pass. We estimate poses by first lifting frame-to-frame optical flow to 3D scene flow via differentiable rendering, preserving locality and shift-equivariance of the image processing backbone. SE(3) camera pose estimation is then performed via a weighted least-squares fit to the scene flow field. This formulation enables us to jointly supervise pose estimation and a generalizable neural scene representation via re-rendering the input video, and thus, train end-to-end and fully self-supervised on real-world video datasets. We demonstrate that our method performs robustly on diverse, real-world video, notably on sequences traditionally challenging to optimization-based pose estimation techniques. 
    more » « less
  8. Reconstruction of 3D neural fields from posed images has emerged as a promising method for self-supervised representation learning. The key challenge preventing the deployment of these 3D scene learners on large-scale video data is their dependence on precise camera poses from structure-from-motion, which is prohibitively expensive to run at scale. We propose a method that jointly reconstructs camera poses and 3D neural scene representations online and in a single forward pass. We estimate poses by first lifting frame-to-frame optical flow to 3D scene flow via differentiable rendering, preserving locality and shift-equivariance of the image processing backbone. SE(3) camera pose estimation is then performed via a weighted least-squares fit to the scene flow field. This formulation enables us to jointly supervise pose estimation and a generalizable neural scene representation via re-rendering the input video, and thus, train end-to-end and fully self-supervised on real-world video datasets. We demonstrate that our method performs robustly on diverse, real-world video, notably on sequences traditionally challenging to optimization-based pose estimation techniques. 
    more » « less
  9. Denoising diffusion models have emerged as a powerful class of generative models capable of capturing the distributions of complex, real-world signals. However, current approaches can only model distributions for which training samples are directly accessible, which is not the case in many real-world tasks. In inverse graphics, for instance, we seek to sample from a distribution over 3D scenes consistent with an image but do not have access to ground-truth 3D scenes, only 2D images. We present a new class of denoising diffusion probabilistic models that learn to sample from distributions of signals that are never observed directly, but instead are only measured through a known differentiable forward model that generates partial observations of the unknown signal. To accomplish this, we directly integrate the forward model into the denoising process. At test time, our approach enables us to sample from the distribution over underlying signals consistent with some partial observation. We demonstrate the efficacy of our approach on three challenging computer vision tasks. For instance, in inverse graphics, we demonstrate that our model enables us to directly sample from the distribution 3D scenes consistent with a single 2D input image. 
    more » « less
  10. We propose a variational technique to optimize for generalized barycentric coordinates that offers additional control compared to existing models. Prior work represents barycentric coordinates using meshes or closed-form formulae, limiting the choice of objective function. In contrast, we directly parameterize the continuous function mapping any coordinate in a polytope’s interior to its barycentric coordinates using a neural field. Enabled by our theoretical characterization of barycentric coordinates, we construct neural fields parameterizing valid coordinates. We demonstrate flexibility using various objective functions, validate our algorithm, and present several applications. 
    more » « less