skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 2401285

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 10, 2025
  2. Free, publicly-accessible full text available August 16, 2025
  3. Fairness and robustness are two important notions of learning models. Fairness ensures that models do not disproportionately harm (or benefit) some groups over others, while robustness measures the models' resilience against small input perturbations. While equally important properties, this paper illustrates a dichotomy between fairness and robustness, and analyzes when striving for fairness decreases the model robustness to adversarial samples. The reported analysis sheds light on the factors causing such contrasting behavior, suggesting that distance to the decision boundary across groups as a key factor. Experiments on non-linear models and different architectures validate the theoretical findings. In addition to the theoretical analysis, the paper also proposes a simple, yet effective, solution to construct models achieving good tradeoffs between fairness and robustness. 
    more » « less
    Free, publicly-accessible full text available August 1, 2025
  4. Decision-focused learning (DFL) is an emerging paradigm that integrates machine learning (ML) and constrained optimization to enhance decision quality by training ML models in an end-to-end system. This approach shows significant potential to revolutionize combinatorial decision-making in real-world applications that operate under uncertainty, where estimating unknown parameters within decision models is a major challenge. This paper presents a comprehensive review of DFL, providing an in-depth analysis of both gradient-based and gradient-free techniques used to combine ML and constrained optimization. It evaluates the strengths and limitations of these techniques and includes an extensive empirical evaluation of eleven methods across seven problems. The survey also offers insights into recent advancements and future research directions in DFL. 
    more » « less
    Free, publicly-accessible full text available August 1, 2025
  5. Free, publicly-accessible full text available August 1, 2025
  6. Free, publicly-accessible full text available June 23, 2025
  7. Free, publicly-accessible full text available June 3, 2025
  8. Free, publicly-accessible full text available May 29, 2025
  9. Low-rank approximation techniques have become the de facto standard for fine-tuning Large Language Models (LLMs) due to their reduced computational and memory requirements. This paper investigates the effectiveness of these methods in capturing the shift of fine-tuning datasets from the initial pre-trained data distribution. Our findings reveal that there are cases in which low-rank fine-tuning falls short in learning such shifts. This, in turn, produces non-negligible side effects, especially when fine-tuning is adopted for toxicity mitigation in pre-trained models, or in scenarios where it is important to provide fair models. Through comprehensive empirical evidence on several models, datasets, and tasks, we show that low-rank fine-tuning inadvertently preserves undesirable biases and toxic behaviors. We also show that this extends to sequential decision-making tasks, emphasizing the need for careful evaluation to promote responsible LLMs development. 
    more » « less
    Free, publicly-accessible full text available May 28, 2025
  10. This paper analyzes the privacy of traditional Statistical Disclosure Control (SDC) systems under a differential privacy interpretation. SDCs, such as cell suppression and swapping, promise to safeguard the confidentiality of data and are routinely adopted in data analyses with profound societal and economic impacts. Through a formal analysis and empirical evaluation of demographic data from real households in the U.S., the paper shows that widely adopted SDC systems not only induce vastly larger privacy losses than classical differential privacy mechanisms, but, they may also come at a cost of larger accuracy and fairness.

     
    more » « less
    Free, publicly-accessible full text available March 25, 2025