Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ACM (Ed.)Early computer science courses (CS1, CS2) are the cornerstone of student understanding of computer science. These courses introduce the foundational knowledge of computer science needed to understand more complex topics and to be successful in follow-on courses. It is thus important to introduce CS concepts in an engaging and easy-to-understand manner to increase student interest and retention. This paper presents a new approach to teaching the Computer Science 1 (CS1) course through our BRIDGES system. This approach aims to increase student engagement and improve learning outcomes by using audio-based assignments that they can manipulate and process audio signal information, as well as visualize and play them. We explain how to design and implement audiobased assignments and connect them to fundamental programming constructs such as variables, control flow, and simple data structures, such as arrays. These assignments encourage and engage students by using audio data they are interested in to write code, promoting problem-solving and improvements in their critical thinking skills.more » « less
-
ACM (Ed.)The Human Machine Teaming (HMT) paradigm focuses on supporting partnerships between humans and autonomous machines. HMT describes requirements for transparency, augmented cognition, and coordination that enable far richer partnerships than those found in typical human-on-the-loop and human-in-the-loop systems. Autonomous, self-adaptive systems in domains such as autonomous driving, robotics, and Cyber-Physical Systems, are often implemented using the MAPE-K feedback loop as the primary reference model. However, while MAPE-K enables fully autonomous behavior, it does not explicitly address the interactions that occur between humans and autonomous machines as intended by HMT. In this paper, we, therefore, present the MAPE-K HMT framework which utilizes runtime models to augment the monitoring, analysis, planning, and execution phases of the MAPE-K loop in order to support HMT despite the different operational cadences of humans and machines. We draw on examples from our own emergency response system of interactive, autonomous, small unmanned aerial systems to illustrate the application of MAPE-K HMT in both a simulated and physical environment, and discuss how the various HMT models are connected and can be integrated into a MAPE-K solution.more » « less
-
ACM (Ed.)The well-known susceptibility of millimeter wave links to human blockage and client mobility has recently motivated researchers to propose approaches that leverage both 802.11ad radios (operating in the 60 GHz band) and legacy 802.11ac radios (operating in the 5 GHz band) in dual-band commercial off-the-shelf devices to simultaneously provide Gbps throughput and reliability. One such approach is via Multipath TCP (MPTCP), a transport layer protocol that is transparent to applications and requires no changes to the underlying wireless drivers. However, MPTCP (as well as other bundling approaches) have only been evaluated to date in 60 GHz WLANs with laptop clients. In this work, we port for first time the MPTCP source code to a dual-band smartphone equipped with an 802.11ad and an 802.11ac radio. We discuss the challenges we face and the system-level optimizations required to enable the phone to support Gbps data rates and yield optimal MPTCP throughput (i.e., the sum of the individual throughputs of the two radios) under ideal conditions. We also evaluate for first time the power consumption of MPTCP in a dual-band 802.11ad/ac smartphone and provide recommendations towards the design of an energy-aware MPTCP scheduler. We make our source code publicly available to enable other researchers to experiment with MPTCP in smartphones equipped with millimeter wave radios.more » « less
-
Proc. 2023 ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (Ed.)Instead of relying on human-annotated training samples to build a classifier, weakly supervised scientific paper classification aims to classify papers only using category descriptions (e.g., category names, category-indicative keywords). Existing studies on weakly supervised paper classification are less concerned with two challenges: (1) Papers should be classified into not only coarse-grained research topics but also fine-grained themes, and potentially into multiple themes, given a large and fine-grained label space; and (2) full text should be utilized to complement the paper title and abstract for classification. Moreover, instead of viewing the entire paper as a long linear sequence, one should exploit the structural information such as citation links across papers and the hierarchy of sections and paragraphs in each paper. To tackle these challenges, in this study, we propose FuTex, a framework that uses the cross-paper network structure and the in-paper hierarchy structure to classify full-text scientific papers under weak supervision. A network-aware contrastive fine-tuning module and a hierarchyaware aggregation module are designed to leverage the two types of structural signals, respectively. Experiments on two benchmark datasets demonstrate that FuTex significantly outperforms competitive baselines and is on par with fully supervised classifiers that use 1,000 to 60,000 ground-truth training samples.more » « less
-
Heterformer: Transformer-based Deep Node Representation Learning on Heterogeneous Text-Rich NetworksProc. 2023 ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (Ed.)Representation learning on networks aims to derive a meaningful vector representation for each node, thereby facilitating downstream tasks such as link prediction, node classification, and node clustering. In heterogeneous text-rich networks, this task is more challenging due to (1) presence or absence of text: Some nodes are associated with rich textual information, while others are not; (2) diversity of types: Nodes and edges of multiple types form a heterogeneous network structure. As pretrained language models (PLMs) have demonstrated their effectiveness in obtaining widely generalizable text representations, a substantial amount of effort has been made to incorporate PLMs into representation learning on text-rich networks. However, few of them can jointly consider heterogeneous structure (network) information as well as rich textual semantic information of each node effectively. In this paper, we propose Heterformer, a Heterogeneous Network-Empowered Transformer that performs contextualized text encoding and heterogeneous structure encoding in a unified model. Specifically, we inject heterogeneous structure information into each Transformer layer when encoding node texts. Meanwhile, Heterformer is capable of characterizing node/edge type heterogeneity and encoding nodes with or without texts. We conduct comprehensive experiments on three tasks (i.e., link prediction, node classification, and node clustering) on three large-scale datasets from different domains, where Heterformer outperforms competitive baselines significantly and consistently.more » « less
-
Proc. 2023 ACM SIGIR Int. Conf. on Research and Development in Information Retrieval (Ed.)Unsupervised discovery of stories with correlated news articles in real-time helps people digest massive news streams without expensive human annotations. A common approach of the existing studies for unsupervised online story discovery is to represent news articles with symbolic- or graph-based embedding and incrementally cluster them into stories. Recent large language models are expected to improve the embedding further, but a straightforward adoption of the models by indiscriminately encoding all information in articles is ineffective to deal with text-rich and evolving news streams. In this work, we propose a novel thematic embedding with an off-the-shelf pretrained sentence encoder to dynamically represent articles and stories by considering their shared temporal themes. To realize the idea for unsupervised online story discovery, a scalable framework USTORY is introduced with two main techniques, theme- and time-aware dynamic embedding and novelty aware adaptive clustering, fueled by lightweight story summaries. A thorough evaluation with real news data sets demonstrates that USTORY achieves higher story discovery performances than baselines while being robust and scalable to various streaming settings.more » « less
-
Proc. 2023 ACM Int. Conf. on Web Search and Data Mining (Ed.)Target-oriented opinion summarization is to profile a target by extracting user opinions from multiple related documents. Instead of simply mining opinion ratings on a target (e.g., a restaurant) or on multiple aspects (e.g., food, service) of a target, it is desirable to go deeper, to mine opinion on fine-grained sub-aspects (e.g., fish). However, it is expensive to obtain high-quality annotations at such fine-grained scale. This leads to our proposal of a new framework, FineSum, which advances the frontier of opinion analysis in three aspects: (1) minimal supervision, where no document-summary pairs are provided, only aspect names and a few aspect/sentiment keywords are available; (2) fine-grained opinion analysis, where sentiment analysis drills down to a specific subject or characteristic within each general aspect; and (3) phrase-based summarization, where short phrases are taken as basic units for summarization, and semantically coherent phrases are gathered to improve the consistency and comprehensiveness of summary. Given a large corpus with no annotation, FineSum first automatically identifies potential spans of opinion phrases, and further reduces the noise in identification results using aspect and sentiment classifiers. It then constructs multiple fine-grained opinion clusters under each aspect and sentiment. Each cluster expresses uniform opinions towards certain sub-aspects (e.g., “fish” in “food” aspect) or characteristics (e.g., “Mexican” in “food” aspect). To accomplish this, we train a spherical word embedding space to explicitly represent different aspects and sentiments. We then distill the knowledge from embedding to a contextualized phrase classifier, and perform clustering using the contextualized opinion-aware phrase embedding. Both automatic evaluations on the benchmark and quantitative human evaluation validate the effectiveness of our approach.more » « less
-
Proceedings of the Sixteenth (Ed.)Instead of mining coherent topics from a given text corpus in a completely unsupervised manner, seed-guided topic discovery methods leverage user-provided seed words to extract distinctive and coherent topics so that the mined topics can better cater to the user’s interest. To model the semantic correlation between words and seeds for discovering topic-indicative terms, existing seedguided approaches utilize different types of context signals, such as document-level word co-occurrences, sliding window-based local contexts, and generic linguistic knowledge brought by pre-trained language models. In this work, we analyze and show empirically that each type of context information has its value and limitation in modeling word semantics under seed guidance, but combining three types of contexts (i.e., word embeddings learned from local contexts, pre-trained language model representations obtained from general-domain training, and topic-indicative sentences retrieved based on seed information) allows them to complement each other for discovering quality topics. We propose an iterative framework, SeedTopicMine, which jointly learns from the three types of contexts and gradually fuses their context signals via an ensemble ranking process. Under various sets of seeds and on multiple datasets, SeedTopicMine consistently yields more coherent and accurate topics than existing seed-guided topic discovery approaches.more » « less
An official website of the United States government

Full Text Available