In this paper, we propose PIMA-Logic, as a novel Processing-in-Memory Architecture for highly flexible and efficient Logic computation. Insteadof integrating complex logic units in cost-sensitive memory, PIMA-Logic exploits a hardware-friendly approach to implement Boolean logic functions between operands either located in the same row or the same column within entire memory arrays. Furthermore, it can efficiently process more complex logic functions between multiple operands to further reduce the latency and power-hungry data movement. The proposed architecture is developed based on Spin Orbit Torque Magnetic Random Access Memory (SOT-MRAM) array and it can simultaneously work as a non-volatile memory and a reconfigurable in-memory logic. The device-to-architecture co-simulation results show that PIMA-Logic can achieve up to 56% and 31.6% improvements with respect to overall energy and delay on combinational logic benchmarks compared to recent Pinatubo architecture. We further implement an in-memory data encryption engine based on PIMA-Logic as a case study. With AES application, it shows 77.2% and 21% lower energy consumption compared to CMOS-ASIC and recent RIMPA implementation, respectively.
Compact Modeling and Design of Magneto-Electric Transistor Devices and Circuits
A Verilog-A based model for the magneto-electric field effect transistor (MEFET) device is implemented and a variety of logic functions based on this device are proposed. These models are used to capture energy consumption and delay per switching event and to benchmark the MEFET with respect to CMOS. Single-source MEFET devices can be used for conventional logic gates like NAND, NOR, inverter and buffer and more complex circuits like the full adder. The dual source MEFET is an enhanced version of the MEFET device which functions like a spin multiplexer (spin-MUXer). Circuits using MEFETs require fewer components than CMOS to generate the same logic operation. These devices display a high on-off ratio., unlike many magneto-electric devices., and they operate at very low voltages., resulting in lower switching energy. Benchmarking results show that these devices perform better in terms of energy and delay., for implementing more complex functions., than the basic logic gates.
- Award ID(s):
- 1740136
- Publication Date:
- NSF-PAR ID:
- 10096464
- Journal Name:
- 2018 31st IEEE International System-on-Chip Conference (SOCC)
- Page Range or eLocation-ID:
- 146 to 151
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Design and Evaluation of a Spintronic In-Memory Processing Platform for Non-Volatile Data EncryptionIn this paper, we propose an energy-efficient reconfigurable platform for in-memory processing based on novel 4-terminal spin Hall effect-driven domain wall motion devices that could be employed as both non-volatile memory cell and in-memory logic unit. The proposed designs lead to unity of memory and logic. The device to system level simulation results show that, with 28% area increase in memory structure, the proposed in-memory processing platform achieves a write energy ~15.6 fJ/bit with 79% reduction compared to that of SOT-MRAM counterpart while keeping the identical 1ns writing speed. In addition, the proposed in-memory logic scheme improves the operating energy by 61.3%, as compared with the recent non-volatile in-memory logic designs. An extensive reliability analysis is also performed over the proposed circuits. We employ Advanced Encryption Standard (AES) algorithm as a case study to elucidate the efficiency of the proposed platform at application level. Simulation results exhibit that the proposed platform can show up to 75.7% and 30.4% lower energy consumption compared to CMOS-ASIC and recent pipelined domain wall (DW) AES implementations, respectively. In addition, the AES Energy-Delay Product (EDP) can show 15.1% and 6.1% improvements compared to the DW-AES and CMOS-ASIC implementations, respectively.
-
Protecting intellectual property (IP) has become a serious challenge for chip designers. Most countermeasures are tailored for CMOS integration and tend to incur excessive overheads, resulting from additional circuitry or device-level modifications. On the other hand, power density is a critical concern for sub-50 nm nodes, necessitating alternate design concepts. Although initially tailored for error-tolerant applications, imprecise computing has gained traction as a general-purpose design technique. Emerging devices are currently being explored to implement ultra-low-power circuits for inexact computing applications. In this paper, we quantify the security threats of imprecise computing using emerging devices. More specifically, we leverage the innate polymorphism and tunable stochastic behavior of spin-orbit torque (SOT) devices, particularly, the giant spin-Hall effect (GSHE) switch. We enable IP protection (by means of logic locking and camouflaging) simultaneously for deterministic and probabilistic computing, directly at the GSHE device level. We conduct a comprehensive security analysis using state-of-the-art Boolean satisfiability (SAT) attacks; this study demonstrates the superior resilience of our GSHE primitive when tailored for deterministic computing. We also demonstrate how probabilistic computing can thwart most, if not all, existing SAT attacks. Based on this finding, we propose an attack scheme called probabilistic SAT (PSAT) which can bypass the defensemore »
-
A Muller C-Element is a digital circuit component used in most asynchronous circuits and systems. In Null Convention Logic, the Muller C-Elements make up the subset of THmn threshold gates where the threshold, m, and the input bit- width, n, are equal. This paper presents a new Efficient Muller C- Element implementation, EMC, that is especially suitable for Null Convention Logic applications with high input bit-widths, and it is much faster and smaller than standard implementations. It has a two-transistor switching delay that is independent of the input bit- width, n, and exhibits low noise and static power consumption. It is suitable for all Muller C-Element applications, especially those like Null Convention Logic register feedback circuits that can have large input bit-widths. To reduce static power consumption, it uses active resistors that are only turned “ON” when necessary. Two output stages are presented to implement the required Muller C- Element digital hysteresis: standard, semi-static cross-coupled inverter version, and differential sense-amplifier option. For large values of n, our circuit requires approximately one-half fewer transistors than combining smaller Null Convention Logic THmn semi-static threshold gates. We have successfully simulated up to n = 1024 at a 65 nm node.
-
Charge-recycling adiabatic circuits are recently receiving increased attention due to both high energy-efficiency and higher resistance against side-channel attacks. These characteristics make adiabatic circuits a promising technique for Internet-of-things based applications. One of the important limitations of adiabatic logic is the higher intra-cell interconnect capacitance due to differential outputs and cross-coupled pMOS transistors. Since energy consumption has quadratic dependence on capacitance in adiabatic circuits (unlike conventional static CMOS where dependence is linear), higher interconnect capacitance significantly degrades the overall power savings that can be achieved by adiabatic logic, particularly in nanoscale technologies. In this paper, monolithic 3D integrated adiabatic circuits are introduced where transistor-level monolithic 3D technology is used to implement adiabatic gates. A 45 nm two-tier Mono3D PDK is used to demonstrate the proposed approach. Monolithic inter-tier vias are leveraged to significantly reduce parasitic interconnect capacitance, achieving up to 47% reduction in power-delay product as compared to 2D adiabatic circuits in a 45 nm technology node.