The increasing importance of power electronic converters in supplying electrical energy to utility grids places a higher priority to detect and protect against fault conditions. Fault detection and isolation are particularly important for inverters that provide black-start recovery for microgrids since these converters provide the energy source for restoration after a power outage. This paper presents a new fault detection and location method for Cascaded H-Bridge (CHB) multilevel inverters. The new fault detection method is based on monitoring the output voltage of each cell and output current directions along with each switch’s state. By monitoring each cell’s output voltage and current direction, the faulty cell can be detected and isolated. After the faulty cell is detected, the faulty switch can be located by comparing the current direction with the switching states. This technique is implemented with Level-Shifted Pulse Width Modulation (LS-PWM) in order to maintain acceptable total harmonic distortion (THD) levels at the converter. The proposed method can be implemented for a CHB with any number of cells, can operate with nonlinear loads, and offers very fast detection times. Simulation and experimental results verify the performance of this method.
more »
« less
Fast Detection of Open Circuit Device Faults and Fault Tolerant Operation of Stacked Multilevel Converters
This paper proposes a simple and fast technique for power device open circuit (OC) fault detection in stacked multicell converters (SMCs). A mitigation technique allowing for fault-tolerant operation using a simple front-end routing circuit is also proposed for SMCs. The fault detection concept only needs to sense the voltage and direction of current at the output terminal of the SMC to detect and localize an OC switch fault to a particular rail of the SMC. The proposed technique compares the measured and expected voltage levels considering the commanded switch states and the direction of the terminal current flow. Once an OC fault is detected and localized, the front-end routing circuit will be activated to reconfigure the SMC converter to a simple flying capacitor multilevel converter (FCMC) to maintain the output power flow with a reduced number of voltage levels. A window detector circuit is proposed to track the output voltage level and current direction with high bandwidth. Simulations were performed to validate the fault detection method and router performance. The functionality of windows detector is investigated with a hardware prototype 7 level 300 V SMC.
more »
« less
- Award ID(s):
- 1711485
- PAR ID:
- 10105688
- Date Published:
- Journal Name:
- 2019 IEEE Applied Power Electronics Conference and Exposition (APEC)
- Volume:
- 1
- Issue:
- 1
- Page Range / eLocation ID:
- 1758 to 1765
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A High Gain DC-DC Topology Based on Two-Winding Coupled Inductors Featuring Continuous Input Currentnull (Ed.)A high-voltage-gain dc-dc converter topology is proposed for renewable energy applications. The proposed coupled-inductor-based high-gain dc-dc converter features reduced input current ripple. The semiconductor elements voltage spikes due to the leakage inductance are prevented through the use of a clamping circuit. The Clamping circuit helps recover the leakage inductance stored energy, which causes voltage spikes on the switch. This results in the selection of elements with lower voltage ratings. Power switches with lower voltage ratings lead to lower conduction losses and improved system efficiency. The DC component of the inductor magnetizing current is zero. Consequently, no energy is stored in the inductor core, and the losses are further reduced.more » « less
-
In this study, a power converter topology and control schemes for the power converter stages are proposed for a DC extreme fast charger. The proposed system is composed of a cascaded H-bridge (CHB) converter as the active front end (AFE), and an input series output parallel (ISOP), which includes three parallel connected dual active bridge (DAB) cells. A modified Lyapunov Function (LF) based control strategy is applied to obtain high current control response for the AFE. An additional controller to remove the voltage unbalances among the H-bridges is also presented. Additionally, the triple phase-shift (TPS) control method is applied for the ISOP DAB converter. A Lagrange Multiplier (LM) based optimization study is performed to minimize the RMS current of the transformer. The performance of the proposed converter topology and control strategies is validated with MATLAB/Simulink simulations.more » « less
-
This paper demonstrates a high-efficiency modular multilevel resonant DC-DC converter (MMRC) with zero-voltage switching (ZVS) capability. In order to minimize the conduction loss in the converter, optimizing the root-mean-square (RMS) current flowing through switching devices is considered an effective approach. The analysis of circuit configuration and operating principle show that the RMS value of the current flowing through switching devices is closely related to the factors such as the resonant tank parameters, switching frequency, converter output voltage and current, etc. A quantitative analysis that considers all these factors has been performed to evaluate the RMS current of all the components in the circuit. When the circuit parameters are carefully designed, the switch current waveform can be close to the square waveform, which has a low RMS value and results in low conduction loss. And a design example based on the theoretical analysis is presented to show the design procedures of the presented converter. A 600 W 48 V-to-12 V prototype is built with the parameters obtained from the design example section. Simulation and experiments have been performed to verify the high-efficiency feature of the designed converter. The measured converter peak efficiency reaches 99.55% when it operates at 200 kHz. And its power density can be as high as 795 W/in 3 .more » « less
-
In this paper, a sliding mode current controller (SMC) is proposed for mutually coupled switched reluctance machines (MCSRMs) using a three-phase voltage source converter (VSC). A generalized state-space model of MCSRMs is first presented using a three-phase voltage source converter. Asymmetric bridge converters and three-phase voltage source converter are compared in terms of switching frequency. A sliding mode current controller is then designed to achieve constant switching frequency and lower sampling rate using a three-phase VSC. The stability analysis of the sliding controller is given to ensure the stability of the controller. Finally, the effectiveness of SMC is verified through simulation studies with a three-phase, sinusoidal excitation 12/8 MCSRM over a wide speed range. Compared to the hysteresis current control, SMC demonstrates a comparable performance in terms of torque ripples, torque root-mean-square tracking errors (RMSE) and current RMSE while achieving a constant switching frequency and much lower sampling rate.more » « less