skip to main content

Title: Toward Large-Scale Dynamically Reconfigurable Apertures Using Graphene
We present a novel fabrication technique for large-scale, on-wafer graphene devices. With the proposed technique, large-area graphene apertures can be fabricated, enabling the proliferation of graphene-based reconfigurable devices, including metasurfaces. Such topologies require large-area high yield fabrication processes. To avoid graphene delamination during the chemical processes of the fabrication, we use a titanium sacrificial layer to protect the graphene monolayer. To evaluate the fabrication method, we present broadband in-plane graphene measurements in the 220-330 GHz band for the first time and compare the measured resistance sheet with previous works.  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting
Page Range / eLocation ID:
511 to 512
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We characterize a novel fabrication procedure for the implementation of large arrays of subwavelength graphene devices. With the proposed process, we can now integrate graphene layers on large substrate areas (> 4 cm2) and implement thousands of devices with high-yield (> 90 %). Examples of such systems include broadband THz phased arrays and metasurfaces that can be used in THz imaging and sensing. Current nano-fabrication processes hinder the proliferation of large arrays due to the fragile nature of graphene. Conversely, we use titanium sacrificial layers to protect the delicate graphene throughout the fabrication process. Thus, we minimize graphene delamination and enable multiple devices on large-area substrates with high-yield. In addition, we present a series of on-wafer measurement results in the 220-330 GHz band, verifying the robustness of our fabrication process. 
    more » « less
  2. null (Ed.)
    Scalable graphene synthesis and facile large-area membrane fabrication are imperative to advance nanoporous atomically thin membranes (NATMs) for molecular separations. Although chemical vapor deposition (CVD) allows for roll-to-roll high-quality monolayer graphene synthesis, facile transfer with atomically clean interfaces to porous supports for large-area NATM fabrication remains extremely challenging. Sacrificial polymer scaffolds commonly used for graphene transfer typically leave polymer residues detrimental to membrane performance and transfers without polymer scaffolds suffer from low yield resulting in high non-selective leakage through NATMs. Here, we systematically study the factors influencing graphene NATM fabrication and report on a novel roll-to-roll manufacturing compatible isopropanol-assisted hot lamination (IHL) process that enables scalable, facile and clean transfer of CVD graphene on to polycarbonate track etched (PCTE) supports with coverage ≥99.2%, while preserving support integrity/porosity. We demonstrate fully functional centimeter-scale graphene NATMs that show record high permeances (∼2–3 orders of magnitude higher) and better selectivity than commercially available state-of-the-art polymeric dialysis membranes, specifically in the 0–1000 Da range. Our work highlights a scalable approach to fabricate graphene NATMs for practical applications and is fully compatible with roll-to-roll manufacturing processes. 
    more » « less
  3. Abstract

    Supercapacitors have emerged as one of the leading energy‐storage technologies due to their short charge/discharge time and exceptional cycling stability; however, the state‐of‐the‐art energy density is relatively low. Hybrid electrodes based on transition metal oxides and carbon‐based materials are considered to be promising candidates to overcome this limitation. Herein, a rational design of graphene/VOxelectrodes is proposed that incorporates vanadium oxides with multiple oxidation states onto highly conductive graphene scaffolds synthesized via a facile laser‐scribing process. The graphene/VOxelectrodes exhibit a large potential window with a high three‐electrode specific capacitance of 1110 F g–1. The aqueous graphene/VOxsymmetric supercapacitors (SSCs) can reach a high energy density of 54 Wh kg–1with virtually no capacitance loss after 20 000 cycles. Moreover, the flexible quasi‐solid‐state graphene/VOxSSCs can reach a very high energy density of 72 Wh kg–1, or 7.7 mWh cm–3, outperforming many commercial devices. WithRct < 0.02 Ω and Coulombic efficiency close to 100%, these gel graphene/VOxSSCs can retain 92% of their capacitance after 20 000 cycles. The process enables the direct fabrication of redox‐active electrodes that can be integrated with essentially any substrate including silicon wafers and flexible substrates, showing great promise for next‐generation large‐area flexible displays and wearable electronic devices.

    more » « less
  4. Abstract

    Since the isolation of graphene and numerous demonstrations of its unique properties, the expectations for this material to be implemented in many future commercial applications have been enormous. However, to date, challenges still remain. One of the key challenges is the fabrication of graphene in a manner that satisfies processing requirements. While transfer of graphene can be used, this tends to damage or contaminate it, which degrades its performance. Hence, there is an important drive to grow graphene directly over a number of technologically important materials, viz., different substrate materials, so as to avoid the need for transfer. One of the more successful approaches to synthesis graphene is chemical vapor deposition (CVD), which is well established. Historically, transition metal substrates are used due to their catalytic properties. However, in recent years this has developed to include many nonmetal substrate systems. Moreover, both solid and molten substrate forms have also been demonstrated. In addition, the current trend to progress flexible devices has spurred interest in graphene growth directly over flexible materials surfaces. All these aspects are presented in this review which presents the developments in available substrates for graphene fabrication by CVD, with a focus primarily on large area graphene.

    more » « less
  5. Abstract

    Since the first discovery of graphene, 2D materials are drawing tremendous attention due to their atomic thickness and superior properties. Fabrication of high‐quality micro‐/nanopatterns of 2D materials is essential for their applications in both nanoelectronics and nanophotonics. In this work, an all‐optical lithographic technique, optothermoplasmonic nanolithography (OTNL), is developed to achieve high‐throughput, versatile, and maskless patterning of different atomic layers. Low‐power (≈5 mW µm−2) and high‐resolution patterning of both graphene and MoS2monolayers is demonstrated through exploiting thermal oxidation and sublimation at the highly localized thermoplasmonic hotspots. Density functional theory simulations reveal that Au nanoparticles reduce the formation energy (≈0.6 eV) of C monovacancies through bonding between undercoordinated C and Au, leading to a significant Au‐catalyzed graphene oxidation and a reduction of the required laser operation power. Programmable patterning of 2D materials into complex and large‐scale nanostructures is further demonstrated. With its low‐power, high‐resolution, and versatile patterning capability, OTNL offers the possibility to scale up the fabrication of nanostructured 2D materials for many applications in photonic and electronic devices.

    more » « less