We characterize a novel fabrication procedure for the implementation of large arrays of subwavelength graphene devices. With the proposed process, we can now integrate graphene layers on large substrate areas (> 4 cm2) and implement thousands of devices with high-yield (> 90 %). Examples of such systems include broadband THz phased arrays and metasurfaces that can be used in THz imaging and sensing. Current nano-fabrication processes hinder the proliferation of large arrays due to the fragile nature of graphene. Conversely, we use titanium sacrificial layers to protect the delicate graphene throughout the fabrication process. Thus, we minimize graphene delamination and enable multiple devices on large-area substrates with high-yield. In addition, we present a series of on-wafer measurement results in the 220-330 GHz band, verifying the robustness of our fabrication process.
more »
« less
Toward Large-Scale Dynamically Reconfigurable Apertures Using Graphene
We present a novel fabrication technique for large-scale, on-wafer graphene devices. With the proposed technique, large-area graphene apertures can be fabricated, enabling the proliferation of graphene-based reconfigurable devices, including metasurfaces. Such topologies require large-area high yield fabrication processes. To avoid graphene delamination during the chemical processes of the fabrication, we use a titanium sacrificial layer to protect the graphene monolayer. To evaluate the fabrication method, we present broadband in-plane graphene measurements in the 220-330 GHz band for the first time and compare the measured resistance sheet with previous works.
more »
« less
- Award ID(s):
- 1847138
- PAR ID:
- 10135989
- Date Published:
- Journal Name:
- 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting
- Page Range / eLocation ID:
- 511 to 512
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Scalable graphene synthesis and facile large-area membrane fabrication are imperative to advance nanoporous atomically thin membranes (NATMs) for molecular separations. Although chemical vapor deposition (CVD) allows for roll-to-roll high-quality monolayer graphene synthesis, facile transfer with atomically clean interfaces to porous supports for large-area NATM fabrication remains extremely challenging. Sacrificial polymer scaffolds commonly used for graphene transfer typically leave polymer residues detrimental to membrane performance and transfers without polymer scaffolds suffer from low yield resulting in high non-selective leakage through NATMs. Here, we systematically study the factors influencing graphene NATM fabrication and report on a novel roll-to-roll manufacturing compatible isopropanol-assisted hot lamination (IHL) process that enables scalable, facile and clean transfer of CVD graphene on to polycarbonate track etched (PCTE) supports with coverage ≥99.2%, while preserving support integrity/porosity. We demonstrate fully functional centimeter-scale graphene NATMs that show record high permeances (∼2–3 orders of magnitude higher) and better selectivity than commercially available state-of-the-art polymeric dialysis membranes, specifically in the 0–1000 Da range. Our work highlights a scalable approach to fabricate graphene NATMs for practical applications and is fully compatible with roll-to-roll manufacturing processes.more » « less
-
Abstract Objective: Flexible Electrocorticography (ECoG) electrode arrays that conform to the cortical surface and record surface field potentials from multiple brain regions provide unique insights into how computations occurring in distributed brain regions mediate behavior. Specialized microfabrication methods are required to produce flexible ECoG devices with high-density electrode arrays. However, these fabrication methods are challenging for scientists without access to cleanroom fabrication equipment. Results: Here we present a fully desktop fabricated flexible graphene ECoG array. First, we synthesized a stable, conductive ink via liquid exfoliation of Graphene in Cyrene. Next, we established a stencil-printing process for patterning the graphene ink via laser-cut stencils on flexible polyimide substrates. Benchtop tests indicate that the graphene electrodes have good conductivity of ∼1.1 × 10 3 S cm −1 , flexibility to maintain their electrical connection under static bending, and electrochemical stability in a 15 d accelerated corrosion test. Chronically implanted graphene ECoG devices remain fully functional for up to 180 d, with average in vivo impedances of 24.72 ± 95.23 kΩ at 1 kHz. The ECoG device can measure spontaneous surface field potentials from mice under awake and anesthetized states and sensory stimulus-evoked responses. Significance: The stencil-printing fabrication process can be used to create Graphene ECoG devices with customized electrode layouts within 24 h using commonly available laboratory equipment.more » « less
-
Abstract Since the first discovery of graphene, 2D materials are drawing tremendous attention due to their atomic thickness and superior properties. Fabrication of high‐quality micro‐/nanopatterns of 2D materials is essential for their applications in both nanoelectronics and nanophotonics. In this work, an all‐optical lithographic technique, optothermoplasmonic nanolithography (OTNL), is developed to achieve high‐throughput, versatile, and maskless patterning of different atomic layers. Low‐power (≈5 mW µm−2) and high‐resolution patterning of both graphene and MoS2monolayers is demonstrated through exploiting thermal oxidation and sublimation at the highly localized thermoplasmonic hotspots. Density functional theory simulations reveal that Au nanoparticles reduce the formation energy (≈0.6 eV) of C monovacancies through bonding between undercoordinated C and Au, leading to a significant Au‐catalyzed graphene oxidation and a reduction of the required laser operation power. Programmable patterning of 2D materials into complex and large‐scale nanostructures is further demonstrated. With its low‐power, high‐resolution, and versatile patterning capability, OTNL offers the possibility to scale up the fabrication of nanostructured 2D materials for many applications in photonic and electronic devices.more » « less
-
The implementation of aberration-corrected electron beam lithography (AC-EBL) in a 200 keV scanning transmission electron microscope (STEM) is a novel technique that could be used for the fabrication of quantum devices based on 2D atomic crystals with single nanometer critical dimensions, allowing to observe more robust quantum effects. In this work we study electron beam sculpturing of nanostructures on suspended graphene field effect transistors using AC-EBL, focusing on the in situ characterization of the impact of electron beam exposure on device electronic transport quality. When AC-EBL is performed on a graphene channel (local exposure) or on the outside vicinity of a graphene channel (non-local exposure), the charge transport characteristics of graphene can be significantly affected due to charge doping and scattering. While the detrimental effect of non-local exposure can be largely removed by vigorous annealing, local-exposure induced damage is irreversible and cannot be fixed by annealing. We discuss the possible causes of the observed exposure effects. Our results provide guidance to the future development of high-energy electron beam lithography for nanomaterial device fabrication.more » « less
An official website of the United States government

