skip to main content


Title: Why Are Stratospheric Sudden Warmings Sudden (and Intermittent)?
This paper examines the role of wave–mean flow interaction in the onset and suddenness of stratospheric sudden warmings (SSWs). Evidence is presented that SSWs are, on average, a threshold behavior of finite-amplitude Rossby waves arising from the competition between an increasing wave activity A and a decreasing zonal-mean zonal wind [Formula: see text]. The competition puts a limit to the wave activity flux that a stationary Rossby wave can transmit upward. A rapid, spontaneous vortex breakdown occurs once the upwelling wave activity flux reaches the limit, or equivalently, once [Formula: see text] drops below a certain fraction of u REF , a wave-free, reference-state wind inverted from the zonalized quasigeostrophic potential vorticity. This fraction is 0.5 in theory and about 0.3 in reanalyses. We propose [Formula: see text] as a local, instantaneous measure of the proximity to vortex breakdown (i.e., preconditioning). The ratio r generally stays above the threshold during strong-vortex winters until a pronounced final warming, whereas during weak-vortex winters it approaches the threshold early in the season, culminating in a precipitous drop in midwinter as SSWs form. The essence of the threshold behavior is captured by a semiempirical 1D model of SSWs, similar to the “traffic jam” model of Nakamura and Huang for atmospheric blocking. This model predicts salient features of SSWs including rapid vortex breakdown and downward migration of the wave activity/zonal wind anomalies, with analytical expressions for the respective time scales. The model’s response to a variety of transient wave forcing and damping is discussed.  more » « less
Award ID(s):
1909522
NSF-PAR ID:
10163332
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of the Atmospheric Sciences
Volume:
77
Issue:
3
ISSN:
0022-4928
Page Range / eLocation ID:
943 to 964
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The European Centre for Medium-range Weather Forecasting (ECMWF) Reanalysis v5 (ERA5) data set (1979 – 2020) is used in many climate studies.  The present monthly mean data set of Eliassen-Palm fluxes (EP fluxes) and EP flux divergences, was created from twice-daily gridded values of ERA5 winds and temperature on pressure surfaces and is intended to fill a gap in availability.   It is compatible for use with ERA5 monthly mean data.   The EP flux is a diagnostic tool for assessing wave propagation and wave-mean flow interaction. It is a vector representation for the propagation of synoptic and planetary Rossby wave activity in the meridional plane.  An upward component indicates a poleward heat flux while an equatorward component indicates a poleward momentum flux.   EP flux divergence implies a source of Rossby wave activity, and EP flux convergence implies absorption of Rossby wave activity.  EP flux divergence represents the body force, or net effect of waves on the zonal mean zonal wind, with EP flux convergence causing deceleration of zonal mean westerlies and EP flux divergence causing acceleration. The primary effect of a region of EP flux convergence, however, is to induce poleward motion, with an associated mean meridional circulation and quadrupole of temperature anomalies in the meridional plane. EP fluxes are useful in investigating many planetary and synoptic scale weather phenomena such as the Quasi-Biennial Oscillation (QBO) and Sudden Stratospheric Warmings (SSWs).   The meridional and vertical components of the EP flux are calculated in pressure coordinates using the following initial conditions:  Ground density (rho_0 ):P_0/R_0/T_0 Ground pressure (P_0): 1013hPa Ground temperature (T_0): Temperature at 1000hPa Earth radius (a) = 6378km   Dimensions in the data: Latitude: 90°N-90°S (grid spacing is 0.25°, as in the ERA5 reanalysis)  Pressure: 1 hPa-1000 hPa (levels are the same as in the ERA5 reanalysis)  Time: January 1979 – December 2020; December, January, February (DJF) only; 00z and 12z 
    more » « less
  2. Abstract. Stratospheric circulation is a critical part of the Arctic ozone cycle.Sudden stratospheric warming events (SSWs) manifest the strongest alterationof stratospheric dynamics. During SSWs, changes in planetary wavepropagation vigorously influence zonal mean zonal wind, temperature, andtracer concentrations in the stratosphere over the high latitudes. In thisstudy, we examine six persistent major SSWs from 2004 to 2020 using theModern-Era Retrospective analysis for Research and Applications, Version 2(MERRA-2). Using the unique density of observations around the Greenlandsector at high latitudes, we perform comprehensive comparisons of high-latitude observations with the MERRA-2 ozone dataset during the six majorSSWs. Our results show that MERRA-2 captures the high variability of mid-stratospheric ozone fluctuations during SSWs over high latitudes. However,larger uncertainties are observed in the lower stratosphere and troposphere.The zonally averaged stratospheric ozone shows a dramatic increase of9 %–29 % in total column ozone (TCO) near the time of each SSW, which lastsup to 2 months. This study shows that the average shape of the Arcticpolar vortex before SSWs influences the geographical extent, timing, andmagnitude of ozone changes. The SSWs exhibit a more significant impact onozone over high northern latitudes when the average polar vortex is mostlyelongated as seen in 2009 and 2018 compared to the events in which the polarvortex is displaced towards Europe. Strong correlation (R2=90  %) isobserved between the magnitude of change in average equivalent potentialvorticity before and after SSWs and the associated averaged total columnozone changes over high latitudes. This paper investigates the differentterms of the ozone continuity equation using MERRA-2 circulation, whichemphasizes the key role of vertical advection in mid-stratospheric ozoneduring the SSWs and the magnified vertical advection in elongated vortexshape as seen in 2009 and 2018. 
    more » « less
  3. The two-way interaction between Madden–Julian oscillation (MJO) and higher-frequency waves (HFW) over the Maritime Continent (MC) during boreal winter of 1984–2005 is investigated. It is noted from observational analysis that strengthened (weakened) HFW activity appears to the west (east) of and under MJO convection during the MJO active phase and the opposite is seen during the MJO suppressed phase. Sensitivity model experiments indicate that the control of HFW activity by MJO is through change of the background vertical wind shear and specific humidity. The upscale feedbacks from HFW to MJO through nonlinear rectification of condensational heating and eddy momentum transport are also investigated with observational data. A significantly large amount (25%–40%) of positive heating anomaly ([Formula: see text]) at low levels to the east of MJO convection is contributed by nonlinear rectification of HFW. This nonlinear rectification is primarily attributed to eddy meridional moisture advection. A momentum budget diagnosis reveals that 60% of MJO zonal wind tendency at 850 hPa is attributed to the nonlinear interaction of HFW with other scale flows. Among them, the largest contribution arises from eddy zonal momentum flux divergence [Formula: see text]. Easterly (westerly) vertical shear to the west (east) of MJO convection during the MJO active phase causes the strengthening (weakening) of the HFW zonal wind anomaly. This leads to the increase (decrease) of eddy momentum flux activity to the east (west) of the MJO convection, which causes a positive (negative) eddy zonal momentum flux divergence in the zonal wind transitional region during the MJO active (suppressed) phase, favoring the eastward propagation of the MJO. 
    more » « less
  4. null (Ed.)
    Abstract The Whole Atmosphere Community Climate Model, version 4 (WACCM4), is used to investigate the influence of stratospheric conditions on the development of sudden stratospheric warmings (SSWs). To this end, targeted experiments are performed on selected modeled SSW events. Specifically, the model is reinitialized three weeks before a given SSW, relaxing the surface fluxes, winds, and temperature below 10 km to the corresponding fields from the free-running simulation. Hence, the tropospheric wave evolution is unaltered across the targeted experiments, but the stratosphere itself can evolve freely. The stratospheric zonal-mean state is then altered 21 days prior to the selected SSWs and rerun with an ensemble of different initial conditions. It is found that a given tropospheric evolution concomitant with the development of an SSW does not uniquely determine the occurrence of an event and that the stratospheric conditions are relevant to the subsequent evolution of the stratospheric flow toward an SSW, even for a fixed tropospheric evolution. It is also shown that interpreting the meridional heat flux at 100 hPa as a proxy of the tropospheric injection of wave activity into the stratosphere should be regarded with caution and that stratospheric dynamics critically influence the heat flux at that altitude. 
    more » « less
  5. Abstract

    Interactions between large-scale waves and the Hadley Cell are examined using a linear two-layer model on anf-plane. A linear meridional moisture gradient determines the strength of the idealized Hadley Cell. The trade winds are in thermal wind balance with a weak temperature gradient (WTG). The mean meridional moisture gradient is unstable to synoptic-scale (horizontal scale of ∼1000 km) moisture modes that are advected westward by the trade winds, reminiscent of oceanic tropical depression-like waves. Meridional moisture advection causes the moisture modes to grow from “moisture-vortex instability” (MVI), resulting in a poleward eddy moisture flux that flattens the zonal-mean meridional moisture gradient, thereby weakening the Hadley Cell. The amplification of waves at the expense of the zonal-mean meridional moisture gradient implies a downscale latent energy cascade. The eddy moisture flux is opposed by a regeneration of the meridional moisture gradient by the Hadley Cell. These Hadley Cell-moisture mode interactions are reminiscent of quasi-geostrophic interactions, except that wave activity is due to column moisture variance rather than potential vorticity variance. The interactions can result in predator-prey cycles in moisture mode activity and Hadley Cell strength that are akin to ITCZ breakdown. It is proposed that moisture modes are the tropical analog to midlatitude baroclinic waves. MVI is analogous to baroclinic instability, stirring latent energy in the same way that dry baroclinic eddies stir sensible heat. These results indicate that moisture modes stabilize the Hadley Cell, and may be as important as the latter in global energy transport.

     
    more » « less