skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The family of perfect ideals of codimension 3, of type 2 with 5 generators
In this paper we define an interesting family of perfect ideals of codimension three, with five generators, of Cohen-Macaulay type two with trivial multiplication on the $$ \operatorname {Tor}$$ algebra. This family is likely to play a key role in classifying perfect ideals with five generators of type two.  more » « less
Award ID(s):
1802067
PAR ID:
10163656
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the American Mathematical Society
Volume:
148
ISSN:
1088-6826
Page Range / eLocation ID:
2745-2755
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We use the Kempf-Lascoux-Weyman geometric technique in order to determine the minimal free resolutions of some orbit closures of quivers. As a consequence, we obtain that for Dynkin quivers orbit closures of 1-step representations are normal with rational singularities. For Dynkin quivers of type $$ \mathbb{A}$$, we describe explicit minimal generators of the defining ideals of orbit closures of 1-step representations. Using this, we provide an algorithm for type $$ \mathbb{A}$$ quivers for describing an efficient set of generators of the defining ideal of the orbit closure of any representation. 
    more » « less
  2. In this article, we work with certain families of ideals called p p -families in rings of prime characteristic. This family of ideals is present in the theories of tight closure, Hilbert-Kunz multiplicity, and F F -signature. For each p p -family of ideals, we attach an Euclidean object called p p -body, which is analogous to the Newton Okounkov body associated with a graded family of ideals. Using the combinatorial properties of p p -bodies and algebraic properties of the Hilbert-Kunz multiplicity, we establish a Volume = Multiplicity formula for p p -families of m R \mathfrak {m}_{R} -primary ideals in a Noetherian local ring R R
    more » « less
  3. Symmetric strongly shifted ideals constitute a class of monomial ideals which are equipped with an action of the symmetric group and are analogous to the well-studied class of strongly stable monomial ideals. In this paper, we focus on algebraic and combinatorial properties of symmetric strongly shifted ideals. On the algebraic side, we elucidate properties that pertain to behavior under ideal operations, primary decomposition, and the structure of their Rees algebra. On the combinatorial side, we develop a notion of partition Borel generators which leads to connections to discrete polymatroids, convex polytopes, and permutohedral toric varieties. 
    more » « less
  4. We use hypersurface support to classify thick (two-sided) ideals in the stable categories of representations for several families of finite-dimensional integrable Hopf algebras: bosonized quantum complete intersections, quantum Borels in type A, Drinfeld doubles of height 1 Borels in finite characteristic, and rings of functions on finite group schemes over a perfect field. We then identify the prime ideal (Balmer) spectra for these stable categories. In the curious case of functions on a finite group scheme G, the spectrum of the category is identified not with the spectrum of cohomology, but with the quotient of the spectrum of cohomology by the adjoint action of the subgroup of connected components in G. 
    more » « less
  5. Abstract We study a class of combinatorially defined polynomial ideals that are generated by minors of a generic symmetric matrix. Included within this class are the symmetric determinantal ideals, the symmetric ladder determinantal ideals, and the symmetric Schubert determinantal ideals of A. Fink, J. Rajchgot, and S. Sullivant. Each ideal in our class is a type C analog of a Kazhdan–Lusztig ideal of A. Woo and A. Yong; that is, it is the scheme‐theoretic defining ideal of the intersection of a type C Schubert variety with a type C opposite Schubert cell, appropriately coordinatized. The Kazhdan–Lusztig ideals that arise are exactly those where the opposite cell is 123‐avoiding. Our main results include Gröbner bases for these ideals, prime decompositions of their initial ideals (which are Stanley–Reisner ideals of subword complexes), and combinatorial formulas for their multigraded Hilbert series in terms of pipe dreams. 
    more » « less