skip to main content


Title: Optimal deployments of UAVs with directional antennas for a power-efficient coverage
To provide a reliable wireless uplink for users in a given ground area, one can deploy Unmanned Aerial Vehicles (UAVs) as base stations (BSs). In another application, one can use UAVs to collect data from sensors on the ground. For a power efficient and scalable deployment of such flying BSs, directional antennas can be utilized to efficiently cover arbitrary 2-D ground areas. We consider a large-scale wireless path-loss model with a realistic angle-dependent radiation pattern for the directional antennas. Based on such a model, we determine the optimal 3-D deployment of N UAVs to minimize the average transmit-power consumption of the users in a given target area. The users are assumed to have identical transmitters with ideal omnidirectional antennas and the UAVs have identical directional antennas with given half-power beamwidth (HPBW) and symmetric radiation pattern along the vertical axis. For uniformly distributed ground users, we show that the UAVs have to share a common flight height in an optimal power-efficient deployment, by simulations. We also derive in closed-form the asymptotic optimal common flight height of N UAVs in terms of the area size, data-rate, bandwidth, HPBW, and path-loss exponent.  more » « less
Award ID(s):
1815339
NSF-PAR ID:
10167869
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE Transactions on Communications
ISSN:
0090-6778
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. To integrate unmanned aerial vehicles (UAVs) in future large-scale deployments, a new wireless communication paradigm, namely, the cellular-connected UAV has recently attracted interest. However, the line-of-sight dominant air-to-ground channels along with the antenna pattern of the cellular ground base stations (GBSs) introduce critical interference issues in cellular-connected UAV communications. In particular, the complex antenna pattern and the ground reflection (GR) from the down-tilted antennas create both coverage holes and patchy coverage for the UAVs in the sky, which leads to unreliable connectivity from the underlying cellular network. To overcome these challenges, in this paper, we propose a new cellular architecture that employs an extra set of co-channel antennas oriented towards the sky to support UAVs on top of the existing down-tilted antennas for ground user equipment (GUE). To model the GR stemming from the down-tilted antennas, we propose a path-loss model, which takes both antenna radiation pattern and configuration into account. Next, we formulate an optimization problem to maximize the minimum signal-to-interference ratio (SIR) of the UAVs by tuning the up-tilt (UT) angles of the up-tilted antennas. Since this is an NP-hard problem, we propose a genetic algorithm (GA) based heuristic method to optimize the UT angles of these antennas. After obtaining the optimal UT angles, we integrate the 3GPP Release-10 specified enhanced inter-cell interference coordination (eICIC) to reduce the interference stemming from the down-tilted antennas. Our simulation results based on the hexagonal cell layout show that the proposed interference mitigation method can ensure higher minimum SIRs for the UAVs over baseline methods while creating minimal impact on the SIR of GUEs. 
    more » « less
  2. UAVs need to communicate along three dimensions (3D) with other aerial vehicles, ranging from above to below, and often need to connect to ground stations. However, wireless transmission in 3D space significantly dissipates power, often hindering the range required for these types of links. Directional transmission is one way to efficiently use available wireless channels to achieve the desired range. While multiple-input multiple-output (MIMO) systems can digitally steer the beam through channel matrix manipulation without needing directional awareness, the power resources required for operating multiple radios on a UAV are often logistically challenging. An alternative approach to streamline resources is the use of phased arrays to achieve directionality in the analog domain, but this requires beam sweeping and results in search-time delay. The complexity and search time can increase with the dynamic mobility pattern of the UAVs in aerial networks. However, if the direction of the receiver is known at the transmitter, the search time can be significantly reduced. In this work, multi-antenna channels between two UAVs in A2A links are analyzed, and based on these findings, an efficient machine learning-based method for estimating the direction of a transmitting node using channel estimates of 4 antennas (2 × 2 MIMO) is proposed. The performance of the proposed method is validated and verified through in-field drone-to-drone measurements. Findings indicate that the proposed method can estimate the direction of the transmitter in the A2A link with 86% accuracy. Further, the proposed direction estimation method is deployable for UAV-based massive MIMO systems to select the directional beam without the need to sweep or search for optimal communication performance. 
    more » « less
  3. In many quantization problems, the distortion function is given by the Euclidean metric to measure the distance of a source sample to any given reproduction point of the quantizer. We will in this work regard distortion functions, which are additively and multiplicatively weighted for each reproduction point resulting in a heterogeneous quantization problem, as used for example in deployment problems of sensor networks. Whereas, normally in such problems, the average distortion is minimized for given weights (parameters), we will optimize the quantization problem over all weights, i.e., we tune or control the distortion functions in our favor. For a uniform source distribution in one-dimension, we derive the unique minimizer, given as the uniform scalar quantizer with an optimal common weight. By numerical simulations, we demonstrate that this result extends to two-dimensions where asymptotically the parameter optimized quantizer is the hexagonal lattice with common weights. As an application, we will determine the optimal deployment of unmanned aerial vehicles (UAVs) to provide a wireless communication to ground terminals under a minimal communication power cost. Here, the optimal weights relate to the optimal flight heights of the UAVs. 
    more » « less
  4. We study downlink transmission in a multi-band heterogeneous network comprising unmanned aerial vehicle (UAV) small base stations and ground-based dual mode mmWave small cells within the coverage area of a microwave (μW) macro base station. We formulate a two-layer optimization framework to simultaneously find efficient coverage radius for the UAVs and energy efficient radio resource management for the network, subject to minimum quality-of-service (QoS) and maximum transmission power constraints. The outer layer derives an optimal coverage radius/height for each UAV as a function of the maximum allowed path loss. The inner layer formulates an optimization problem to maximize the system energy efficiency (EE), defined as the ratio between the aggregate user data rate delivered by the system and its aggregate energy consumption (downlink transmission and circuit power). We demonstrate that at certain values of the target SINR τ introducing the UAV base stations doubles the EE. We also show that an increase in τ beyond an optimal EE point decreases the EE. 
    more » « less
  5. Data files were used in support of the research paper titled "“Experimentation Framework for Wireless
    Communication Systems under Jamming Scenarios" which has been submitted to the IET Cyber-Physical Systems: Theory & Applications journal. 

    Authors: Marko Jacovic, Michael J. Liston, Vasil Pano, Geoffrey Mainland, Kapil R. Dandekar
    Contact: krd26@drexel.edu

    ---------------------------------------------------------------------------------------------

    Top-level directories correspond to the case studies discussed in the paper. Each includes the sub-directories: logs, parsers, rayTracingEmulation, results. 

    --------------------------------

    logs:    - data logs collected from devices under test
        - 'defenseInfrastucture' contains console output from a WARP 802.11 reference design network. Filename structure follows '*x*dB_*y*.txt' in which *x* is the reactive jamming power level and *y* is the jaming duration in samples (100k samples = 1 ms). 'noJammer.txt' does not include the jammer and is a base-line case. 'outMedian.txt' contains the median statistics for log files collected prior to the inclusion of the calculation in the processing script. 
        - 'uavCommunication' contains MGEN logs at each receiver for cases using omni-directional and RALA antennas with a 10 dB constant jammer and without the jammer. Omni-directional folder contains multiple repeated experiments to provide reliable results during each calculation window. RALA directories use s*N* folders in which *N* represents each antenna state. 
        - 'vehicularTechnologies' contains MGEN logs at the car receiver for different scenarios. 'rxNj_5rep.drc' does not consider jammers present, 'rx33J_5rep.drc' introduces the periodic jammer, in 'rx33jSched_5rep.drc' the device under test uses time scheduling around the periodic jammer, in 'rx33JSchedRandom_5rep.drc' the same modified time schedule is used with a random jammer. 

    --------------------------------

    parsers:    - scripts used to collect or process the log files used in the study
            - 'defenseInfrastructure' contains the 'xputFiveNodes.py' script which is used to control and log the throughput of a 5-node WARP 802.11 reference design network. Log files are manually inspected to generate results (end of log file provides a summary). 
            - 'uavCommunication' contains a 'readMe.txt' file which describes the parsing of the MGEN logs using TRPR. TRPR must be installed to run the scripts and directory locations must be updated. 
            - 'vehicularTechnologies' contains the 'mgenParser.py' script and supporting 'bfb.json' configuration file which also require TRPR to be installed and directories to be updated. 

    --------------------------------

    rayTracingEmulation:    - 'wirelessInsiteImages': images of model used in Wireless Insite
                - 'channelSummary.pdf': summary of channel statistics from ray-tracing study
                - 'rawScenario': scenario files resulting from code base directly from ray-tracing output based on configuration defined by '*WI.json' file 
                - 'processedScenario': pre-processed scenario file to be used by DYSE channel emulator based on configuration defined by '*DYSE.json' file, applies fixed attenuation measured externally by spectrum analyzer and additional transmit power per node if desired
                - DYSE scenario file format: time stamp (milli seconds), receiver ID, transmitter ID, main path gain (dB), main path phase (radians), main path delay (micro seconds), Doppler shift (Hz), multipath 1 gain (dB), multipath 1 phase (radians), multipath 1 delay relative to main path delay (micro seconds), multipath 2 gain (dB), multipath 2 phase (radians), multipath 2 delay relative to main path delay (micro seconds)
                - 'nodeMapping.txt': mapping of Wireless Insite transceivers to DYSE channel emulator physical connections required
                - 'uavCommunication' directory additionally includes 'antennaPattern' which contains the RALA pattern data for the omni-directional mode ('omni.csv') and directional state ('90.csv')

    --------------------------------

    results:    - contains performance results used in paper based on parsing of aforementioned log files
     

     
    more » « less