skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: The challenges of modeling and forecasting the spread of COVID-19
The coronavirus disease 2019 (COVID-19) pandemic has placed epidemic modeling at the forefront of worldwide public policy making. Nonetheless, modeling and forecasting the spread of COVID-19 remains a challenge. Here, we detail three regional-scale models for forecasting and assessing the course of the pandemic. This work demonstrates the utility of parsimonious models for early-time data and provides an accessible framework for generating policy-relevant insights into its course. We show how these models can be connected to each other and to time series data for a particular region. Capable of measuring and forecasting the impacts of social distancing, these models highlight the dangers of relaxing nonpharmaceutical public health interventions in the absence of a vaccine or antiviral therapies.  more » « less
Award ID(s):
1737996 1737585 1737770 1737925 2027438
PAR ID:
10172956
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
ISSN:
0027-8424
Page Range / eLocation ID:
202006520
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The coronavirus disease 2019 (COVID-19) pandemic caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has placed epidemic modeling at the center of attention of public policymaking. Predicting the severity and speed of transmission of COVID-19 is crucial to resource management and developing strategies to deal with this epidemic. Based on the available data from current and previous outbreaks, many efforts have been made to develop epidemiological models, including statistical models, computer simulations, mathematical representations of the virus and its impacts, and many more. Despite their usefulness, modeling and forecasting the spread of COVID-19 remains a challenge. In this article, we give an overview of the unique features and issues of COVID-19 data and how they impact epidemic modeling and projection. In addition, we illustrate how various models could be connected to each other. Moreover, we provide new data science perspectives on the challenges of COVID-19 forecasting, from data collection, curation, and validation to the limitations of models, as well as the uncertainty of the forecast. Finally, we discuss some data science practices that are crucial to more robust and accurate epidemic forecasting. 
    more » « less
  2. The COVID-19 pandemic represents the most significant public health disaster since the 1918 influenza pandemic. During pandemics such as COVID-19, timely and reliable spatiotemporal forecasting of epidemic dynamics is crucial. Deep learning-based time series models for forecasting have recently gained popularity and have been successfully used for epidemic forecasting. Here we focus on the design and analysis of deep learning-based models for COVID-19 forecasting. We implement multiple recurrent neural network-based deep learning models and combine them using the stacking ensemble technique. In order to incorporate the effects of multiple factors in COVID-19 spread, we consider multiple sources such as COVID-19 confirmed and death case count data and testing data for better predictions. To overcome the sparsity of training data and to address the dynamic correlation of the disease, we propose clustering-based training for high-resolution forecasting. The methods help us to identify the similar trends of certain groups of regions due to various spatio-temporal effects. We examine the proposed method for forecasting weekly COVID-19 new confirmed cases at county-, state-, and country-level. A comprehensive comparison between different time series models in COVID-19 context is conducted and analyzed. The results show that simple deep learning models can achieve comparable or better performance when compared with more complicated models. We are currently integrating our methods as a part of our weekly forecasts that we provide state and federal authorities. 
    more » « less
  3. null (Ed.)
    COVID-19 pandemic has an unprecedented impact all over the world since early 2020. During this public health crisis, reliable forecasting of the disease becomes critical for resource allocation and administrative planning. The results from compartmental models such as SIR and SEIR are popularly referred by CDC and news media. With more and more COVID-19 data becoming available, we examine the following question: Can a direct data-driven approach without modeling the disease spreading dynamics outperform the well referred compartmental models and their variants? In this paper, we show the possibility. It is observed that as COVID-19 spreads at different speed and scale in different geographic regions, it is highly likely that similar progression patterns are shared among these regions within different time periods. This intuition lead us to develop a new neural forecasting model, called Attention Crossing Time Series (ACTS), that makes forecasts via comparing patterns across time series obtained from multiple regions. The attention mechanism originally developed for natural language processing can be leveraged and generalized to materialize this idea. Among 13 out of 18 testings including forecasting newly con rmed cases, hospitalizations and deaths, ACTS outperforms all the leading COVID-19 forecasters highlighted by CDC. 
    more » « less
  4. Computational epidemiology aims to develop computer models and decision support systems that understand, predict, and control a disease’s spatiotemporal diffusion throughout a population. Researchers can use these models to forecast an epidemic’s future course, allocate scarce resources and assess depletion of current resources, infer disease parameters, and evaluate various interventions. Individual behavior and public policy are critical in understanding and controlling infectious diseases, and computational techniques provide a potentially powerful study tool. The COVID-19 pandemic has had significant social, health, economic, and political ramifications worldwide, and its impact will undoubtedly continue to grow in the coming months.Here we outline an approach to support the COVID-19 response with examples that are rooted in network science and data-driven modeling. 
    more » « less
  5. null (Ed.)
    Computational epidemiology aims to develop computer models and decision support systems that understand, predict, and control a disease’s spatiotemporal diffusion throughout a population. Researchers can use these models to forecast an epidemic’s future course, allocate scarce resources and assess depletion of current resources, infer disease parameters, and evaluate various interventions. Individual behavior and public policy are critical in understanding and controlling infectious diseases, and computational techniques provide a potentially powerful study tool. The COVID-19 pandemic has had significant social, health, economic, and political ramifications worldwide, and its impact will undoubtedly continue to grow in the coming months. Here we outline an approach to support the COVID-19 response with examples that are rooted in network science and data-driven modeling. 
    more » « less