- Award ID(s):
- 1703997
- NSF-PAR ID:
- 10271655
- Date Published:
- Journal Name:
- Journal of Plasma Physics
- Volume:
- 87
- Issue:
- 1
- ISSN:
- 0022-3778
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
A bstract We derive a non-BPS linear ansatz using the charged Weyl formalism in string and M-theory backgrounds. Generic solutions are static and axially-symmetric with an arbitrary number of non-BPS sources corresponding to various brane, momentum and KKm charges. Regular sources are either four-charge non-extremal black holes or smooth non-BPS bubbles. We construct several families such as chains of non-extremal black holes or smooth non-BPS bubbling geometries and study their physics. The smooth horizonless geometries can have the same mass and charges as non-extremal black holes. Furthermore, we find examples that scale towards the four-charge BPS black hole when the non-BPS parameters are taken to be small, but the horizon is smoothly resolved by adding a small amount of non-extremality.more » « less
-
Abstract The existence of soliton families in nonparity‐time‐symmetric complex potentials remains poorly understood, especially in two spatial dimensions. In this article, we analytically investigate the bifurcation of soliton families from linear modes in one‐ and two‐dimensional nonlinear Schrödinger equations with localized Wadati‐type nonparity‐time‐symmetric complex potentials. By utilizing the conservation law of the underlying non‐Hamiltonian wave system, we convert the complex soliton equation into a new real system. For this new real system, we perturbatively construct a continuous family of low‐amplitude solitons bifurcating from a linear eigenmode to all orders of the small soliton amplitude. Hence, the emergence of soliton families in these nonparity‐time‐symmetric complex potentials is analytically explained. We also compare these analytically constructed soliton solutions with high‐accuracy numerical solutions in both one and two dimensions, and the asymptotic accuracy of these perturbation solutions is confirmed.
-
A bstract We construct large classes of non-BPS smooth horizonless geometries that are asymptotic to AdS 3 × S 3 × T 4 in type IIB supergravity. These geometries are supported by electromagnetic flux corresponding to D1-D5 charges. We show that Einstein equations for systems with eight commuting Killing vectors decompose into a set of Ernst equations, thereby admitting an integrable structure. This feature, which can a priori be applied to other $$ {\textrm{AdS}}_D\times \mathcal{C} $$ AdS D × C settings in supergravity, allows us to use solution-generating techniques associated with the Ernst formalism. We explicitly derive solutions by applying the charged Weyl formalism that we have previously developed. These are sourced internally by a chain of bolts that correspond to regions where the orbits of the commuting Killing vectors collapse smoothly. We show that these geometries can be interpreted as non-BPS T 4 and S 3 deformations on global AdS 3 × S 3 × T 4 that are located at the center of AdS 3 . These non-BPS deformations can be made arbitrarily small and should therefore correspond to non-supersymmetric operators in the D1-D5 CFT. Finally, we also construct interesting bound states of non-extremal BTZ black holes connected by regular bolts.more » « less
-
Abstract In this article, the recently discovered phenomenon of delayed Hopf bifurcations (DHB) in reaction–diffusion partial differential equations (PDEs) is analysed in the cubic Complex Ginzburg–Landau equation, as an equation in its own right, with a slowly varying parameter. We begin by using the classical asymptotic methods of stationary phase and steepest descents on the linearized PDE to show that solutions, which have approached the attracting quasi-steady state (QSS) before the Hopf bifurcation remain near that state for long times after the instantaneous Hopf bifurcation and the QSS has become repelling. In the complex time plane, the phase function of the linearized PDE has a saddle point, and the Stokes and anti-Stokes lines are central to the asymptotics. The non-linear terms are treated by applying an iterative method to the mild form of the PDE given by perturbations about the linear particular solution. This tracks the closeness of solutions near the attracting and repelling QSS in the full, non-linear PDE. Next, we show that beyond a key Stokes line through the saddle there is a curve in the space-time plane along which the particular solution of the linear PDE ceases to be exponentially small, causing the solution of the non-linear PDE to diverge from the repelling QSS and exhibit large-amplitude oscillations. This curve is called the space–time buffer curve. The homogeneous solution also stops being exponentially small in a spatially dependent manner, as determined also by the initial data and time. Hence, a competition arises between these two solutions, as to which one ceases to be exponentially small first, and this competition governs spatial dependence of the DHB. We find four different cases of DHB, depending on the outcomes of the competition, and we quantify to leading order how these depend on the main system parameters, including the Hopf frequency, initial time, initial data, source terms, and diffusivity. Examples are presented for each case, with source terms that are a uni-modal function, a smooth step function, a spatially periodic function and an algebraically growing function. Also, rich spatio-temporal dynamics are observed in the post-DHB oscillations. Finally, it is shown that large-amplitude source terms can be designed so that solutions spend substantially longer times near the repelling QSS, and hence, region-specific control over the delayed onset of oscillations can be achieved.more » « less
-
We construct a symplectic integrator for non-separable Hamiltonian systems combining an extended phase space approach of Pihajoki and the symmetric projection method. The resulting method is semiexplicit in the sense that the main time evolution step is explicit whereas the symmetric projection step is implicit. The symmetric projection binds potentially diverging copies of solutions, thereby remedying the main drawback of the extended phase space approach. Moreover, our semiexplicit method is symplectic in the original phase space. This is in contrast to existing extended phase space integrators, which are symplectic only in the extended phase space. We demonstrate that our method exhibits an excellent long-time preservation of invariants, and also that it tends to be as fast as and can be faster than Tao’s explicit modified extended phase space integrator particularly for small enough time steps and with higher-order implementations and for higher-dimensional problems.more » « less