skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A High Gain DC-DC Topology Based on Two-Winding Coupled Inductors Featuring Continuous Input Current
A high-voltage-gain dc-dc converter topology is proposed for renewable energy applications. The proposed coupled-inductor-based high-gain dc-dc converter features reduced input current ripple. The semiconductor elements voltage spikes due to the leakage inductance are prevented through the use of a clamping circuit. The Clamping circuit helps recover the leakage inductance stored energy, which causes voltage spikes on the switch. This results in the selection of elements with lower voltage ratings. Power switches with lower voltage ratings lead to lower conduction losses and improved system efficiency. The DC component of the inductor magnetizing current is zero. Consequently, no energy is stored in the inductor core, and the losses are further reduced.  more » « less
Award ID(s):
1724227
PAR ID:
10288510
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2020 IEEE Energy Conversion Congress and Exposition (ECCE)
Page Range / eLocation ID:
4782 to 4787
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A new high-voltage-gain non-isolated dc-dc topology for applications in renewable energies is proposed. A coupled inductor with three windings is used to increase the proposed topology voltage gain. In addition to increasing the voltage gain, the proposed topology also has other prominent features including continuous input current and zero dc magnetizing inductance current, which reduces the losses and size of coupled inductor core. Furthermore, the continuous input current guarantees a low-volume input filter, which is essential for renewable energy applications. The leakage inductor stored energy is recycled via the diode and capacitor and transferred to the converter output for increasing the efficiency and reducing voltage stresses on the converter components. 
    more » « less
  2. Battery energy storage systems are widely used for renewable power generation and electric transportation systems. Bidirectional DC-DC converters (BDCs) are key components in such systems, enabling bidirectional power flow in battery charging and discharging modes. BDCs can be categorized into isolated and non-isolated. Non-isolated BDCs have lower volume, weight, and power losses, suitable for compact structures without needing galvanic isolation. In this paper, a comprehensive literature review is conducted for non-isolated BDCs, covering soft switching, current ripple reduction, high voltage gain and resiliency techniques. Soft switching aims to reduce switching losses and improve efficiency, including auxiliary circuits and non-auxiliary methods, such as interleaved structures, phase-shift modulation, and synchronous rectification. Current ripple reduction focuses on capacitive loop configurations, interleaved structures, and coupled inductor-based methods. Batteries are low-voltage power sources, BDCs can increase the output voltage to a level required by the applications through an appropriate voltage gain, and high voltage gain techniques include capacitor-based, magnetic-based, and combined networks, and mixed structures. Resiliency is explored to ensure reliable operations under adverse conditions. This review provides valuable insights into developing more efficient, reliable, and high-performance BDCs, addressing the evolving demands of modern energy systems. Future research directions in non-isolated BDCs are recommended in this paper. 
    more » « less
  3. This article proposes a matrix auto-transformer switched-capacitor dc–dc converter to achieve a high voltage conversion ratio, high efficiency, and high power density for 48-V data-center applications. On the high-voltage side, the proposed converter can fully leverage the benefits of high-performance low voltage stress devices similar to the multilevel modular switched-capacitor converter. Compared with the traditional isolated LLC converter with a matrix transformer, the proposed solution utilized a matrix autotransformer concept with merged primary and secondary side windings, thus leading to reduced transformer winding loss. The resonant inductor could be integrated into the transformer similar to the LLC converter. Because of the matrix autotransformer design, it can achieve a current doubler rectifier on the low voltage side. For less than 8-V low output voltage application, the current doubler rectifier design can fully utilize the best figure-of-merit 25-V device, which is more efficient than the full-bridge rectifier solution using two 25-V devices during the operation. All the devices can achieve zero voltage switching or zero current switching and can be naturally clamped without additional clamping circuits. A 500-W 48-V to 6-V dc–dc converter hardware prototype has been developed with optimized device selection and integrated matrix autotransformer design. Both simulation and experiment results have been provided to validate the features and benefits of the proposed converter. The maximum efficiency of the proposed converter can reach 98.33%. 
    more » « less
  4. Dual-Path (DP) DC-DC converters have been proposed as an alternative to traditional hybrid switched capacitor (SC) converters that can operate with a smaller, lower-quality, or higher effective series-resistance ESR inductor. The dual-path approach uses a partially hard-switched flying capacitor to reduce DC inductor current and associated resistive conduction losses. However, the SC hard-charging losses and higher inductor current ripple can partially or completely offset the advantage of reduced inductor DC current depending on the operating conditions and component parameters. In this work, we develop a unified model for all four 2:1 SC-based DP converters that captures SC hard-charging loss and inductor conduction loss as a function of conversion ratio, switching frequency, flying capacitance, and inductor ESR with fixed-volume inductor scaling. While there are regimes where the DP approach has advantages, there are also many scenarios where the traditional hybrid approach outperforms the respective dual-path alternative. 
    more » « less
  5. null (Ed.)
    This paper presents the integration of an AC-DC rectifier and a DC-DC boost converter circuit designed in 180 nm CMOS process for ultra-low frequency (<; 10 Hz) energy harvesting applications. The proposed rectifier is a very low voltage CMOS rectifier circuit that rectifies the low-frequency signal of 100-250 mV amplitude and 1-10 Hz frequency into DC voltage. In this work, the energy is harvested from the REWOD (reverse electrowetting-on-dielectric) generator, which is a reverse electrowetting technique that converts mechanical vibrations to electrical energy. The objective is to develop a REWOD-based self-powered motion (such as walking, running, jogging, etc.) tracking sensors that can be worn, thus harvesting energy from regular activities. To this end, the proposed circuits are designed in such a way that the output from the REWOD is rectified and regulated using a DC-DC converter which is a 5-stage cross-coupled switching circuit. Simulation results show a voltage range of 1.1 V-2.1 V, i.e., 850-1200% voltage conversion efficiency (VCE) and 30% power conversion efficiency (PCE) for low input signal in the range 100-250 mV in the low-frequency range. This performance verifies the integration of the rectifier and DC-DC boost converter which makes it highly suitable for various motion-based energy harvesting applications. 
    more » « less