- Publication Date:
- NSF-PAR ID:
- 10297236
- Journal Name:
- Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering
- Volume:
- 29
- Page Range or eLocation-ID:
- 8 to 19
- Sponsoring Org:
- National Science Foundation
More Like this
-
Background Health care and well-being are 2 main interconnected application areas of conversational agents (CAs). There is a significant increase in research, development, and commercial implementations in this area. In parallel to the increasing interest, new challenges in designing and evaluating CAs have emerged. Objective This study aims to identify key design, development, and evaluation challenges of CAs in health care and well-being research. The focus is on the very recent projects with their emerging challenges. Methods A review study was conducted with 17 invited studies, most of which were presented at the ACM (Association for Computing Machinery) CHI 2020 conference workshop on CAs for health and well-being. Eligibility criteria required the studies to involve a CA applied to a health or well-being project (ongoing or recently finished). The participating studies were asked to report on their projects’ design and evaluation challenges. We used thematic analysis to review the studies. Results The findings include a range of topics from primary care to caring for older adults to health coaching. We identified 4 major themes: (1) Domain Information and Integration, (2) User-System Interaction and Partnership, (3) Evaluation, and (4) Conversational Competence. Conclusions CAs proved their worth during the pandemic as healthmore »
-
Abstract Popular parametric and semiparametric hazards regression models for clustered survival data are inappropriate and inadequate when the unknown effects of different covariates and clustering are complex. This calls for a flexible modeling framework to yield efficient survival prediction. Moreover, for some survival studies involving time to occurrence of some asymptomatic events, survival times are typically interval censored between consecutive clinical inspections. In this article, we propose a robust semiparametric model for clustered interval‐censored survival data under a paradigm of Bayesian ensemble learning, called soft Bayesian additive regression trees or SBART (Linero and Yang, 2018), which combines multiple sparse (soft) decision trees to attain excellent predictive accuracy. We develop a novel semiparametric hazards regression model by modeling the hazard function as a product of a parametric baseline hazard function and a nonparametric component that uses SBART to incorporate clustering, unknown functional forms of the main effects, and interaction effects of various covariates. In addition to being applicable for left‐censored, right‐censored, and interval‐censored survival data, our methodology is implemented using a data augmentation scheme which allows for existing Bayesian backfitting algorithms to be used. We illustrate the practical implementation and advantages of our method via simulation studies and an analysis ofmore »
-
Medical Cyber-physical Systems (MCPS) are vul- nerable to accidental or malicious faults that can target their controllers and cause safety hazards and harm to patients. This paper proposes a combined model and data-driven approach for designing context-aware monitors that can detect early signs of hazards and mitigate them in MCPS. We present a framework for formal specification of unsafe system context using Signal Temporal Logic (STL) combined with an optimization method for patient-specific refinement of STL formulas based on real or simulated faulty data from the closed-loop system for the gener- ation of monitor logic. We evaluate our approach in simulation using two state-of-the-art closed-loop Artificial Pancreas Systems (APS). The results show the context-aware monitor achieves up to 1.4 times increase in average hazard prediction accuracy (F1- score) over several baseline monitors, reduces false-positive and false-negative rates, and enables hazard mitigation with a 54% success rate while decreasing the average risk for patients.
-
Medical Cyber-physical Systems (MCPS) are vulnerable to accidental or malicious faults that can target their controllers and cause safety hazards and harm to patients. This paper proposes a combined model and data-driven approach for designing context-aware monitors that can detect early signs of hazards and mitigate them in MCPS. We present a framework for formal specification of unsafe system context using Signal Temporal Logic (STL) combined with an optimization method for patient-specific refinement of STL formulas based on real or simulated faulty data from the closed-loop system for the generation of monitor logic. We evaluate our approach in simulation using two state-of-the-art closed-loop Artificial Pancreas Systems (APS). The results show the context-aware monitor achieves up to 1.4 times increase in average hazard prediction accuracy (F1score) over several baseline monitors, reduces false-positive and false-negative rates, and enables hazard mitigation with a 54% success rate while decreasing the average risk for patients.
-
One of the main contributors to the human errors that lead to catastrophic injuries in the construction workplace is the failure to identify hazards as a result of poor attention or cognitive lapses. To address this safety concern, the present study used eye-tracking technology to assess how the association between work experience and hazard identification may be mediated due to inattention. A mediation analysis was conducted and tested using a bias-corrected bootstrapping technique with 5000 resamples. The results estimate the direct and indirect effects of work experience on the hazard identification skills of construction workers observing varying hazardous conditions. The results of the mediation analysis confirm that inattention—demonstrated via inattentiveness toward hazards—mediates the relationship between work experience and hazard identification. Specifically, though work experience and dwell time positively correlate with hazard identification, the direct effect of work experience on hazard identification is attenuated with the inclusion of the mediator variables in the model, thus suggesting attentional impairment offsets the benefits of work experience. The outcomes of this study will enable researchers and safety practitioners to harness real-time eye-movement patterns to identify the precursors of cognitive failure, deficient attentional allocation, and poor visual search strategies, all of which may put workersmore »