skip to main content


Title: Expanding infrastructure and growing anthropogenic impacts along Arctic coasts
Abstract The accelerating climatic changes and new infrastructure development across the Arctic require more robust risk and environmental assessment, but thus far there is no consistent record of human impact. We provide a first panarctic satellite-based record of expanding infrastructure and anthropogenic impacts along all permafrost affected coasts (100 km buffer, ≈6.2 Mio km 2 ), named the Sentinel-1/2 derived Arctic Coastal Human Impact (SACHI) dataset. The completeness and thematic content goes beyond traditional satellite based approaches as well as other publicly accessible data sources. Three classes are considered: linear transport infrastructure (roads and railways), buildings, and other impacted area. C-band synthetic aperture radar and multi-spectral information (2016–2020) is exploited within a machine learning framework (gradient boosting machines and deep learning) and combined for retrieval with 10 m nominal resolution. In total, an area of 1243 km 2 constitutes human-built infrastructure as of 2016–2020. Depending on region, SACHI contains 8%–48% more information (human presence) than in OpenStreetMap. 221 (78%) more settlements are identified than in a recently published dataset for this region. 47% is not covered in a global night-time light dataset from 2016. At least 15% (180 km 2 ) correspond to new or increased detectable human impact since 2000 according to a Landsat-based normalized difference vegetation index trend comparison within the analysis extent. Most of the expanded presence occurred in Russia, but also some in Canada and US. 31% and 5% of impacted area associated predominantly with oil/gas and mining industry respectively has appeared after 2000. 55% of the identified human impacted area will be shifting to above 0 ∘ C ground temperature at two meter depth by 2050 if current permafrost warming trends continue at the pace of the last two decades, highlighting the critical importance to better understand how much and where Arctic infrastructure may become threatened by permafrost thaw.  more » « less
Award ID(s):
2052107 1927872
NSF-PAR ID:
10302243
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Environmental Research Letters
Volume:
16
Issue:
11
ISSN:
1748-9326
Page Range / eLocation ID:
115013
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ice-rich permafrost in the circum-Arctic and sub-Arctic (hereafter pan-Arctic), such as late Pleistocene Yedoma, are especially prone to degradation due to climate change or human activity. When Yedoma deposits thaw, large amounts of frozen organic matter and biogeochemically relevant elements return into current biogeochemical cycles. This mobilization of elements has local and global implications: increased thaw in thermokarst or thermal erosion settings enhances greenhouse gas fluxes from permafrost regions. In addition, this ice-rich ground is of special concern for infrastructure stability as the terrain surface settles along with thawing. Finally, understanding the distribution of the Yedoma domain area provides a window into the Pleistocene past and allows reconstruction of Ice Age environmental conditions and past mammoth-steppe landscapes. Therefore, a detailed assessment of the current pan-Arctic Yedoma coverage is of importance to estimate its potential contribution to permafrost-climate feedbacks, assess infrastructure vulnerabilities, and understand past environmental and permafrost dynamics. Building on previous mapping efforts, the objective of this paper is to compile the first digital pan-Arctic Yedoma map and spatial database of Yedoma coverage. Therefore, we 1) synthesized, analyzed, and digitized geological and stratigraphical maps allowing identification of Yedoma occurrence at all available scales, and 2) compiled field data and expert knowledge for creating Yedoma map confidence classes. We used GIS-techniques to vectorize maps and harmonize site information based on expert knowledge. We included a range of attributes for Yedoma areas based on lithological and stratigraphic information from the source maps and assigned three different confidence levels of the presence of Yedoma (confirmed, likely, or uncertain). Using a spatial buffer of 20 km around mapped Yedoma occurrences, we derived an extent of the Yedoma domain. Our result is a vector-based map of the current pan-Arctic Yedoma domain that covers approximately 2,587,000 km 2 , whereas Yedoma deposits are found within 480,000 km 2 of this region. We estimate that 35% of the total Yedoma area today is located in the tundra zone, and 65% in the taiga zone. With this Yedoma mapping, we outlined the substantial spatial extent of late Pleistocene Yedoma deposits and created a unique pan-Arctic dataset including confidence estimates. 
    more » « less
  2. Abstract

    Circum-boreal and -tundra systems are crucial carbon pools that are experiencing amplified warming and are at risk of increasing wildfire activity. Changes in wildfire activity have broad implications for vegetation dynamics, underlying permafrost soils, and ultimately, carbon cycling. However, understanding wildfire effects on biophysical processes across eastern Siberian taiga and tundra remains challenging because of the lack of an easily accessible annual fire perimeter database and underestimation of area burned by MODIS satellite imagery. To better understand wildfire dynamics over the last 20 years in this region, we mapped area burned, generated a fire perimeter database, and characterized fire regimes across eight ecozones spanning 7.8 million km2of eastern Siberian taiga and tundra from ∼61–72.5° N and 100° E–176° W using long-term satellite data from Landsat, processed via Google Earth Engine. We generated composite images for the annual growing season (May–September), which allowed mitigation of missing data from snow-cover, cloud-cover, and the Landsat 7 scan line error. We used annual composites to calculate the difference Normalized Burn Ratio (dNBR) for each year. The annual dNBR images were converted to binary burned or unburned imagery that was used to vectorize fire perimeters. We mapped 22 091 fires burning 152 million hectares (Mha) over 20 years. Although 2003 was the largest fire year on record, 2020 was an exceptional fire year for four of the northeastern ecozones resulting in substantial increases in fire activity above the Arctic Circle. Increases in fire extent, severity, and frequency with continued climate warming will impact vegetation and permafrost dynamics with increased likelihood of irreversible permafrost thaw that leads to increased carbon release and/or conversion of forest to shrublands.

     
    more » « less
  3. This dataset consists of weekly trajectory information of Gulf Stream Warm Core Rings from 2000-2010. This work builds upon Silver et al. (2022a) ( https://doi.org/10.5281/zenodo.6436380) which contained Warm Core Ring trajectory information from 2011 to 2020. Combining the two datasets a total of 21 years of weekly Warm Core Ring trajectories can be obtained. An example of how to use such a dataset can be found in Silver et al. (2022b).

    The format of the dataset is similar to that of  Silver et al. (2022a), and the following description is adapted from their dataset. This dataset is comprised of individual files containing each ring’s weekly center location and its area for 374 WCRs present between January 1, 2000 and December 31, 2010. Each Warm Core Ring is identified by a unique alphanumeric code 'WEyyyymmddA', where 'WE' represents a Warm Eddy (as identified in the analysis charts); 'yyyymmdd' is the year, month and day of formation; and the last character 'A' represents the sequential sighting of the eddies in a particular year. Continuity of a ring which passes from one year to the next is maintained by the same character in the first sighting.  For example, the first ring in 2002 having a trailing alphabet of 'F' indicates that five rings were carried over from 2001 which were still observed on January 1, 2002. Each ring has its own netCDF (.nc) filename following its alphanumeric code. Each file contains 4 variables, “Lon”- the ring center’s weekly longitude, “Lat”- the ring center’s weekly latitude, “Area” - the rings weekly size in km2, and “Date” in days - representing the days since Jan 01, 0000. 

    The process of creating the WCR tracking dataset follows the same methodology of the previously generated WCR census (Gangopadhyay et al., 2019, 2020). The Jenifer Clark’s Gulf Stream Charts used to create this dataset are 2-3 times a week from 2000-2010. Thus, we used approximately 1560 Charts for the 10 years of analysis. All of these charts were reanalyzed between 75° and 55°W using QGIS 2.18.16 (2016) and geo-referenced on a WGS84 coordinate system (Decker, 1986). 

     

    Silver, A., Gangopadhyay, A, & Gawarkiewicz, G. (2022a). Warm Core Ring Trajectories in the Northwest Atlantic Slope Sea (2011-2020) (1.0.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.6436380

    Silver, A., Gangopadhyay, A., Gawarkiewicz, G., Andres, M., Flierl, G., & Clark, J. (2022b). Spatial Variability of Movement, Structure, and Formation of Warm Core Rings in the Northwest Atlantic Slope Sea. Journal of Geophysical Research: Oceans127(8), e2022JC018737. https://doi.org/10.1029/2022JC018737 

    Gangopadhyay, A., G. Gawarkiewicz, N. Etige, M. Monim and J. Clark, 2019. An Observed Regime Shift in the Formation of Warm Core Rings from the Gulf Stream, Nature - Scientific Reports, https://doi.org/10.1038/s41598-019-48661-9. www.nature.com/articles/s41598-019-48661-9.

    Gangopadhyay, A., N. Etige, G. Gawarkiewicz, A. M. Silver, M. Monim and J. Clark, 2020.  A Census of the Warm Core Rings of the Gulf Stream (1980-2017). Journal of Geophysical Research, Oceans, 125, e2019JC016033. https://doi.org/10.1029/2019JC016033.

    QGIS Development Team. QGIS Geographic Information System (2016).

    Decker, B. L. World Geodetic System 1984. World geodetic system 1984 (1986).

     

    Funded by two NSF US grants OCE-1851242, OCE-212328 {"references": ["Silver, A., Gangopadhyay, A, & Gawarkiewicz, G. (2022). Warm Core Ring Trajectories in the Northwest Atlantic Slope Sea (2011-2020) (1.0.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.6436380", "Silver, A., Gangopadhyay, A., Gawarkiewicz, G., Andres, M., Flierl, G., & Clark, J. (2022b). Spatial Variability of Movement, Structure, and Formation of Warm Core Rings in the Northwest Atlantic Slope Sea.\u00a0Journal of Geophysical Research: Oceans,\u00a0127(8), e2022JC018737.\u00a0https://doi.org/10.1029/2022JC018737", "Gangopadhyay, A., G. Gawarkiewicz, N. Etige, M. Monim and J. Clark, 2019. An Observed Regime Shift in the Formation of Warm Core Rings from the Gulf Stream, Nature - Scientific Reports, https://doi.org/10.1038/s41598-019-48661-9. www.nature.com/articles/s41598-019-48661-9.", "Gangopadhyay, A., N. Etige, G. Gawarkiewicz, A. M. Silver, M. Monim and J. Clark, 2020. A Census of the Warm Core Rings of the Gulf Stream (1980-2017). Journal of Geophysical Research, Oceans, 125, e2019JC016033. https://doi.org/10.1029/2019JC016033.", "QGIS Development Team. QGIS Geographic Information System (2016).", "Decker, B. L. World Geodetic System 1984. World geodetic system 1984 (1986)."]} 
    more » « less
  4. Abstract

    In 2007, the Anaktuvuk River fire burned more than 1000 km2of arctic tundra in northern Alaska, ~ 50% of which occurred in an area with ice-rich syngenetic permafrost (Yedoma). By 2014, widespread degradation of ice wedges was apparent in the Yedoma region. In a 50 km2area, thaw subsidence was detected across 15% of the land area in repeat airborne LiDAR data acquired in 2009 and 2014. Updating observations with a 2021 airborne LiDAR dataset show that additional thaw subsidence was detected in < 1% of the study area, indicating stabilization of the thaw-affected permafrost terrain. Ground temperature measurements between 2010 and 2015 indicated that the number of near-surface soil thawing-degree-days at the burn site were 3 × greater than at an unburned control site, but by 2022 the number was reduced to 1.3 × greater. Mean annual ground temperature of the near-surface permafrost increased by 0.33 °C/yr in the burn site up to 7-years post-fire, but then cooled by 0.15 °C/yr in the subsequent eight years, while temperatures at the control site remained relatively stable. Permafrost cores collected from ice-wedge troughs (n = 41) and polygon centers (n = 8) revealed the presence of a thaw unconformity, that in most cases was overlain by a recovered permafrost layer that averaged 14.2 cm and 18.3 cm, respectively. Taken together, our observations highlight that the initial degradation of ice-rich permafrost following the Anaktuvuk River tundra fire has been followed by a period of thaw cessation, permafrost aggradation, and terrain stabilization.

     
    more » « less
  5. Abstract

    Arctic lakes located in permafrost regions are susceptible to catastrophic drainage. In this study, we reconstructed historical lake drainage events on the western Arctic Coastal Plain of Alaska between 1955 and 2017 using USGS topographic maps, historical aerial photography (1955), and Landsat Imagery (ca. 1975, ca. 2000, and annually since 2000). We identified 98 lakes larger than 10 ha that partially (>25% of area) or completely drained during the 62‐year period. Decadal‐scale lake drainage rates progressively declined from 2.0 lakes/yr (1955–1975), to 1.6 lakes/yr (1975–2000), and to 1.2 lakes/yr (2000–2017) in the ~30,000‐km2study area. Detailed Landsat trend analysis between 2000 and 2017 identified two years, 2004 and 2006, with a cluster (five or more) of lake drainages probably associated with bank overtopping or headward erosion. To identify future potential lake drainages, we combined the historical lake drainage observations with a geospatial dataset describing lake elevation, hydrologic connectivity, and adjacent lake margin topographic gradients developed with a 5‐m‐resolution digital surface model. We identified ~1900 lakes likely to be prone to drainage in the future. Of the 20 lakes that drained in the most recent study period, 85% were identified in this future lake drainage potential dataset. Our assessment of historical lake drainage magnitude, mechanisms and pathways, and identification of potential future lake drainages provides insights into how arctic lowland landscapes may change and evolve in the coming decades to centuries.

     
    more » « less