skip to main content


Title: Wearables can help me learn: A survey of user perception of wearable technologies for learning in everyday life
Wearable devices are a popular class of portable ubiquitous technology. These devices are available in a variety of forms, ranging from smart glasses to smart rings. The fact that smart wearable devices are attached to the body makes them particularly suitable to be integrated into people’s daily lives. Thus, we propose that wearables can be particularly useful to help people make sense of different kinds of information and situations in the course of their everyday activities, in other words, to help support learning in everyday life. Further, different forms of wearables have different affordances leading to varying perceptions and preferences, depending on the purpose and context of use. While there is research on wearable use in the learning context, it is mostly limited to specific settings and usually only explores wearable use for a specific task. This paper presents an online survey with 70 participants conducted to understand users’ preferences and perceptions of how wearables may be used to support learning in their everyday life. Multiple ways of use of wearable for learning were proposed. Asking for information was the most common learning-oriented use. The smartwatch/wristband, followed by the smart glasses, was the most preferred wearable form factor to support learning. Our survey results also showed that the choice of wearable type to use for learning is associated with prior wearable experience and that perceived social influence of wearables decreases significantly with gain in the experience with a fitness tracker. Overall, our study indicates that wearable devices have untapped potential to be used for learning in daily life and different form factors are perceived to afford different functions and used for different purposes.  more » « less
Award ID(s):
1942937
NSF-PAR ID:
10317590
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Education and information technologies
ISSN:
1573-7608
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The privacy of users and information are becoming increasingly important with the growth and pervasive use of mobile devices such as wearables, mobile phones, drones, and Internet of Things (IoT) devices. Today many of these mobile devices are equipped with cameras which enable users to take pictures and record videos anytime they need to do so. In many such cases, bystanders’ privacy is not a concern, and as a result, audio and video of bystanders are often captured without their consent. We present results from a user study in which 21 participants were asked to use a wearable system called FacePET developed to enhance bystanders’ facial privacy by providing a way for bystanders to protect their own privacy rather than relying on external systems for protection. While past works in the literature focused on privacy perceptions of bystanders when photographed in public/shared spaces, there has not been research with a focus on user perceptions of bystander-based wearable devices to enhance privacy. Thus, in this work, we focus on user perceptions of the FacePET device and/or similar wearables to enhance bystanders’ facial privacy. In our study, we found that 16 participants would use FacePET or similar devices to enhance their facial privacy, and 17 participants agreed that if smart glasses had features to conceal users’ identities, it would allow them to become more popular. 
    more » « less
  2. Using new technology to provide automated feedback on classroom discourse offers a unique opportunity for educators to engage in self-reflection on their teaching, in particular to ensure that the instructional environment is equitable and productive for all students. More information is needed about how teachers experience automated data tools, including what they perceive as relevant and helpful for their everyday teaching. This mixed-methods study explored the perceptions and engagement of 21 math teachers over two years with a big data tool that analyzes classroom recordings and generates information about their discourse practices in near real-time. Findings revealed that teachers perceived the tool as having utility, yet the specific feedback that teachers perceived as most useful changed over time. In addition, teachers who used the tool throughout both years increased their use of talk moves over time, suggesting that they were making changes due to their review of the personalized feedback. These findings speak to promising directions for the development of AI-based, big data tools that help shape teacher learning and instruction, particularly tools that have strong perceived utility. 
    more » « less
  3. Background

    As mobile health (mHealth) studies become increasingly productive owing to the advancements in wearable and mobile sensor technology, our ability to monitor and model human behavior will be constrained by participant receptivity. Many health constructs are dependent on subjective responses, and without such responses, researchers are left with little to no ground truth to accompany our ever-growing biobehavioral data. This issue can significantly impact the quality of a study, particularly for populations known to exhibit lower compliance rates. To address this challenge, researchers have proposed innovative approaches that use machine learning (ML) and sensor data to modify the timing and delivery of surveys. However, an overarching concern is the potential introduction of biases or unintended influences on participants’ responses when implementing new survey delivery methods.

    Objective

    This study aims to demonstrate the potential impact of an ML-based ecological momentary assessment (EMA) delivery system (using receptivity as the predictor variable) on the participants’ reported emotional state. We examine the factors that affect participants’ receptivity to EMAs in a 10-day wearable and EMA–based emotional state–sensing mHealth study. We study the physiological relationships indicative of receptivity and affect while also analyzing the interaction between the 2 constructs.

    Methods

    We collected data from 45 healthy participants wearing 2 devices measuring electrodermal activity, accelerometer, electrocardiography, and skin temperature while answering 10 EMAs daily, containing questions about perceived mood. Owing to the nature of our constructs, we can only obtain ground truth measures for both affect and receptivity during responses. Therefore, we used unsupervised and supervised ML methods to infer affect when a participant did not respond. Our unsupervised method used k-means clustering to determine the relationship between physiology and receptivity and then inferred the emotional state during nonresponses. For the supervised learning method, we primarily used random forest and neural networks to predict the affect of unlabeled data points as well as receptivity.

    Results

    Our findings showed that using a receptivity model to trigger EMAs decreased the reported negative affect by >3 points or 0.29 SDs in our self-reported affect measure, scored between 13 and 91. The findings also showed a bimodal distribution of our predicted affect during nonresponses. This indicates that this system initiates EMAs more commonly during states of higher positive emotions.

    Conclusions

    Our results showed a clear relationship between affect and receptivity. This relationship can affect the efficacy of an mHealth study, particularly those that use an ML algorithm to trigger EMAs. Therefore, we propose that future work should focus on a smart trigger that promotes EMA receptivity without influencing affect during sampled time points.

     
    more » « less
  4. Background Over the past 2 decades, various desktop and mobile telemedicine systems have been developed to support communication and care coordination among distributed medical teams. However, in the hands-busy care environment, such technologies could become cumbersome because they require medical professionals to manually operate them. Smart glasses have been gaining momentum because of their advantages in enabling hands-free operation and see-what-I-see video-based consultation. Previous research has tested this novel technology in different health care settings. Objective The aim of this study was to review how smart glasses were designed, used, and evaluated as a telemedicine tool to support distributed care coordination and communication, as well as highlight the potential benefits and limitations regarding medical professionals’ use of smart glasses in practice. Methods We conducted a literature search in 6 databases that cover research within both health care and computer science domains. We used the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) methodology to review articles. A total of 5865 articles were retrieved and screened by 3 researchers, with 21 (0.36%) articles included for in-depth analysis. Results All of the reviewed articles (21/21, 100%) used off-the-shelf smart glass device and videoconferencing software, which had a high level of technology readiness for real-world use and deployment in care settings. The common system features used and evaluated in these studies included video and audio streaming, annotation, augmented reality, and hands-free interactions. These studies focused on evaluating the technical feasibility, effectiveness, and user experience of smart glasses. Although the smart glass technology has demonstrated numerous benefits and high levels of user acceptance, the reviewed studies noted a variety of barriers to successful adoption of this novel technology in actual care settings, including technical limitations, human factors and ergonomics, privacy and security issues, and organizational challenges. Conclusions User-centered system design, improved hardware performance, and software reliability are needed to realize the potential of smart glasses. More research is needed to examine and evaluate medical professionals’ needs, preferences, and perceptions, as well as elucidate how smart glasses affect the clinical workflow in complex care environments. Our findings inform the design, implementation, and evaluation of smart glasses that will improve organizational and patient outcomes. 
    more » « less
  5. Despite promising results in the rehabilitation field, it remains unclear whether upper limb robotic wearables, e.g., for people with physical impairments resulting from neurodegenerative disease, can be made portable and suitable for everyday use. We present a lightweight, fully portable, textile-based, soft inflatable wearable robot for shoulder elevation assistance that provides dynamic active support to the upper limbs. The technology is mechanically transparent when unpowered, can quantitatively assess free movement of the user, and adds only 150 grams of weight to each upper limb. In 10 individuals with amyotrophic lateral sclerosis (ALS) with different degrees of neuromuscular impairment, we demonstrated immediate improvement in the active range of motion and compensation for continuing physical deterioration in two individuals with ALS over 6 months. Along with improvements in movement, we show that this robotic wearable can improve functional activity without any training, restoring performance of basic activities of daily living. In addition, a reduction in shoulder muscle activity and perceived muscular exertion, coupled with increased endurance for holding objects, highlight the potential of this device to mitigate the impact of muscular fatigue for patients with ALS. These results represent a further step toward everyday use of assistive, soft, robotic wearables for the upper limbs.

     
    more » « less