We explore a nonvariational quantum state preparation approach combined with the ADAPT operator selection strategy in the application of preparing the ground state of a desired target Hamiltonian. In this algorithm, energy gradient measurements determine both the operators and the gate parameters in the quantum circuit construction. We compare this nonvariational algorithm with ADAPT-VQE and with feedback-based quantum algorithms in terms of the rate of energy reduction, the circuit depth, and the measurement cost in molecular simulation. We find that, despite using deeper circuits, this new algorithm reaches chemical accuracy at a similar measurement cost to ADAPT-VQE. Since it does not rely on a classical optimization subroutine, it may provide robustness against circuit parameter errors due to imperfect control or gate synthesis.
more »
« less
Optimized Quantum Program Execution Ordering to Mitigate Errors in Simulations of Quantum Systems
Simulating the time evolution of a physical system at quantum mechanical levels of detail - known as Hamiltonian Simulation (HS) - is an important and interesting problem across physics and chemistry. For this task, algorithms that run on quantum computers are known to be exponentially faster than classical algorithms; in fact, this application motivated Feynman to propose the construction of quantum computers. Nonetheless, there are challenges in reaching this performance potential. Prior work has focused on compiling circuits (quantum programs) for HS with the goal of maximizing either accuracy or gate cancellation. Our work proposes a compilation strategy that simultaneously advances both goals. At a high level, we use classical optimizations such as graph coloring and travelling salesperson to order the execution of quantum programs. Specifically, we group together mutually commuting terms in the Hamiltonian (a matrix characterizing the quantum mechanical system) to improve the accuracy of the simulation. We then rearrange the terms within each group to maximize gate cancellation in the final quantum circuit. These optimizations work together to improve HS performance and result in an average 40% reduction in circuit depth. This work advances the frontier of HS which in turn can advance physical and chemical modeling in both basic and applied sciences.
more »
« less
- PAR ID:
- 10321372
- Date Published:
- Journal Name:
- 2021 International Conference on Rebooting Computing (ICRC)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract The quantum simulation of quantum chemistry is a promising application of quantum computers. However, for N molecular orbitals, the $${\mathcal{O}}({N}^{4})$$ O ( N 4 ) gate complexity of performing Hamiltonian and unitary Coupled Cluster Trotter steps makes simulation based on such primitives challenging. We substantially reduce the gate complexity of such primitives through a two-step low-rank factorization of the Hamiltonian and cluster operator, accompanied by truncation of small terms. Using truncations that incur errors below chemical accuracy allow one to perform Trotter steps of the arbitrary basis electronic structure Hamiltonian with $${\mathcal{O}}({N}^{3})$$ O ( N 3 ) gate complexity in small simulations, which reduces to $${\mathcal{O}}({N}^{2})$$ O ( N 2 ) gate complexity in the asymptotic regime; and unitary Coupled Cluster Trotter steps with $${\mathcal{O}}({N}^{3})$$ O ( N 3 ) gate complexity as a function of increasing basis size for a given molecule. In the case of the Hamiltonian Trotter step, these circuits have $${\mathcal{O}}({N}^{2})$$ O ( N 2 ) depth on a linearly connected array, an improvement over the $${\mathcal{O}}({N}^{3})$$ O ( N 3 ) scaling assuming no truncation. As a practical example, we show that a chemically accurate Hamiltonian Trotter step for a 50 qubit molecular simulation can be carried out in the molecular orbital basis with as few as 4000 layers of parallel nearest-neighbor two-qubit gates, consisting of fewer than 10 5 non-Clifford rotations. We also apply our algorithm to iron–sulfur clusters relevant for elucidating the mode of action of metalloenzymes.more » « less
-
Understanding the computational power of noisy intermediate-scale quantum (NISQ) devices is of both fundamental and practical importance to quantum information science. Here, we address the question of whether error-uncorrected noisy quantum computers can provide computational advantage over classical computers. Specifically, we study noisy random circuit sampling in one dimension (or 1D noisy RCS) as a simple model for exploring the effects of noise on the computational power of a noisy quantum device. In particular, we simulate the real-time dynamics of 1D noisy random quantum circuits via matrix product operators (MPOs) and characterize the computational power of the 1D noisy quantum system by using a metric we call MPO entanglement entropy. The latter metric is chosen because it determines the cost of classical MPO simulation. We numerically demonstrate that for the two-qubit gate error rates we considered, there exists a characteristic system size above which adding more qubits does not bring about an exponential growth of the cost of classical MPO simulation of 1D noisy systems. Specifically, we show that above the characteristic system size, there is an optimal circuit depth, independent of the system size, where the MPO entanglement entropy is maximized. Most importantly, the maximum achievable MPO entanglement entropy is bounded by a constant that depends only on the gate error rate, not on the system size. We also provide a heuristic analysis to get the scaling of the maximum achievable MPO entanglement entropy as a function of the gate error rate. The obtained scaling suggests that although the cost of MPO simulation does not increase exponentially in the system size above a certain characteristic system size, it does increase exponentially as the gate error rate decreases, possibly making classical simulation practically not feasible even with state-of-the-art supercomputers.more » « less
-
This work contributes a generalized model for quantum computation called NChooseK. NChooseK is based on a single parametrized primitive suitable to express a variety of problems that cannot be solved efficiently using classical computers but may admit an efficient quantum solution. We implement a code generator that, given arbitrary parameters for N and K, generates code suitable for execution on IBM Q quantum hardware. We assess the performance of the code generator, limitations in the size of circuit depth and number of gates, and propose optimizations. We identify future work to improve efficiency and applicability of the NChooseK model.more » « less
-
Quantum computing (QC) is a new paradigm offering the potential of exponential speedups over classical computing for certain computational problems. Each additional qubit doubles the size of the computational state space available to a QC algorithm. This exponential scaling underlies QC’s power, but today’s Noisy Intermediate-Scale Quantum (NISQ) devices face significant engineering challenges in scalability. The set of quantum circuits that can be reliably run on NISQ devices is limited by their noisy operations and low qubit counts. This paper introduces CutQC, a scalable hybrid computing approach that combines classical computers and quantum computers to enable evaluation of quantum circuits that cannot be run on classical or quantum computers alone. CutQC cuts large quantum circuits into smaller subcircuits, allowing them to be executed on smaller quantum devices. Classical postprocessing can then reconstruct the output of the original circuit. This approach offers significant runtime speedup compared with the only viable current alternative -- purely classical simulations -- and demonstrates evaluation of quantum circuits that are larger than the limit of QC or classical simulation. Furthermore, in real-system runs, CutQC achieves much higher quantum circuit evaluation fidelity using small prototype quantum computers than the state-of-the-art large NISQ devices achieve. Overall, this hybrid approach allows users to leverage classical and quantum computing resources to evaluate quantum programs far beyond the reach of either one alone.more » « less
An official website of the United States government

