Abstract We examine the geometry of the post–asymptotic giant branch (AGB) star binary AC Her and its circumbinary disk. We show that the observations describe a binary orbit that is perpendicular to the disk with an angular momentum vector that is within 9° of the binary eccentricity vector, meaning that the disk is close to a stable polar alignment. The most likely explanation for the very large inner radius of the dust is a planet within the circumbinary disk. This is therefore both the first reported detection of a polar circumbinary disk around a post-AGB binary and the first evidence of a polar circumbinary planet. We consider the dynamical constraints on the circumbinary disk size and mass. The polar circumbinary disk feeds circumstellar disks with gas on orbits that are highly inclined with respect to the binary orbit plane. The resulting circumstellar disk inclination could be anywhere from coplanar to polar depending upon the competition between the mass accretion and binary torques.
more »
« less
How Binaries Accrete: Hydrodynamic Simulations with Passive Tracer Particles
Abstract Linear analysis of gas flows around orbiting binaries suggests that a centrifugal barrier ought to clear a low-density cavity around the binary and inhibit mass transfer onto it. Modern hydrodynamics simulations have confirmed the low-density cavity, but show that any mass flowing from large scales into the circumbinary disk is eventually transferred onto the binary components. Even though many numerical studies confirm this picture, it is still not understood precisely how gas parcels overcome the centrifugal barrier and ultimately accrete. We present a detailed analysis of the binary accretion process, using an accurate prescription for evolving grid-based hydrodynamics with Lagrangian tracer particles that track the trajectories of individual gas parcels. We find that binary accretion can be described in four phases: (1) gas is viscously transported through the circumbinary disk up to the centrifugal barrier at the cavity wall, (2) the cavity wall is tidally distorted into accretion streams consisting of near-ballistic gas parcels on eccentric orbits, (3) the portion of each stream moving inwards of an accretion horizon radius r ¯ ≃ a —the radius beyond which no material is returned to the cavity wall—becomes bound to a minidisk orbiting an individual binary component, and (4) the minidisk gas accretes onto the binary component through the combined effect of viscous and tidal stresses.
more »
« less
- PAR ID:
- 10337899
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 932
- Issue:
- 1
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 24
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We demonstrate that gas disks around binary systems might deliver gas to the binary components only when the circumbinary disk is relatively warm. We present new grid-based hydrodynamics simulations, performed with the binary on the grid and a locally isothermal equation of state, in which the binary is seen to functionally “stop accreting” if the orbital Mach number in the disk exceeds a threshold value of about 40. Above this threshold, the disk continues to extract angular momentum from the binary orbit, but it delivers very little mass to the black holes and instead piles up mass in a ring surrounding the binary. This ring will eventually become viscously relaxed and deliver mass to the binary at the large-scale inflow rate. However, we show that the timescale for such relaxation can far exceed the implied binary lifetime. We demonstrate that the ability of a binary–disk system to equilibrate is dependent on the efficiency at which accretion streams deposit mass onto the binary, which, in turn is highly sensitive to the thermodynamic conditions of the inner disk. If disks around massive black hole binaries do operate in such nonaccreting regimes, it suggests these systems may be dimmer than their single black hole counterparts but could exhibit dramatic rebrightening after the black holes inspiral and merge. This dimming begins in the UV/optical and could completely choke high-energy emission, such that these systems would likely be intrinsically X-ray weak with reddened continua, potentially resembling the spectra of “little red dots” recently identified in JWST observations.more » « less
-
Abstract We report an Atacama Large Millimeter/submillimeter Array 0.88 mm (Band 7) continuum detection of the accretion disk around SR 12 c, an ∼11 M Jup planetary-mass companion (PMC) orbiting its host binary at 980 au. This is the first submillimeter detection of a circumplanetary disk around a wide PMC. The disk has a flux density of 127 ± 14 μ Jy and is not resolved by the ∼0.″1 beam, so the dust disk radius is likely less than 5 au and can be much smaller if the dust continuum is optically thick. If, however, the dust emission is optically thin, then the SR 12 c disk has a comparable dust mass to the circumplanetary disk around PDS 70 c but is about five times lower than that of the ∼12 M Jup free-floating OTS 44. This suggests that disks around bound and unbound planetary-mass objects can span a wide range of masses. The gas mass estimated with an accretion rate of 10 −11 M ☉ yr −1 implies a gas-to-dust ratio higher than 100. If cloud absorption is not significant, a nondetection of 12 CO(3–2) implies a compact gas disk around SR 12 c. Future sensitive observations may detect more PMC disks at 0.88 mm flux densities of ≲100 μ Jy.more » « less
-
Abstract We study the effects of general relativity (GR) on the evolution and alignment of circumbinary disks around binaries on all scales. We implement relativistic apsidal precession of the binary into the hydrodynamics codephantom. We find that the effects of GR can suppress the stable polar alignment of a circumbinary disk, depending on how the relativistic binary apsidal precession timescale compares to the disk nodal precession timescale. Studies of circumbinary disk evolution typically ignore the effects of GR, which is an appropriate simplification for low-mass or widely separated binary systems. In this case, polar alignment occurs, provided that the disks initial misalignment is sufficiently large. However, systems with a very short relativistic precession timescale cannot polar align and instead move toward coplanar alignment. In the intermediate regime where the timescales are similar, the outcome depends upon the properties of the disk. Polar alignment is more likely in the wavelike disk regime (where the disk viscosity parameter is less than the aspect ratio,α<H/r), since the disk is in good radial communication. In the viscous disk regime, disk breaking is more likely. Multiple rings can destructively interact with one another, resulting in short disk lifetimes and the disk moving toward coplanar alignment. Around main-sequence star or stellar mass black hole binaries, polar alignment may be suppressed far from the binary, but in general, the inner parts of the disk can align to polar. Polar alignment may be completely suppressed for disks around supermassive black holes for close binary separations.more » « less
-
Aims. We present high-sensitivity and high spectral-resolution NOEMA observations of the Class 0/I binary system SVS13A, composed of the low-mass protostars VLA4A and VLA4B, with a separation of ~90 au. VLA4A is undergoing an accretion burst that is enriching the chemistry of the surrounding gas, which provides an excellent opportunity to probe the chemical and physical conditions as well as the accretion process. Methods. We observe the (12 K –11 K ) lines of CH 3 CN and CH 3 13 CN, the DCN (3–2) line, and the C 18 O (2–1) line toward SVS13A using NOEMA. Results. We find complex line profiles at disk scales that cannot be explained by a single component or pure Keplerian motion. By adopting two velocity components to model the complex line profiles, we find that the temperatures and densities are significantly different among these two components. This suggests that the physical conditions of the emitting gas traced via CH 3 CN can change dramatically within the circumbinary disk. In addition, combining our observations of DCN (3–2) with previous ALMA observations at high angular resolution, we find that the binary system (or VLA4A) might be fed by an infalling streamer from envelope scales (~700 au). If this is the case, this streamer contributes to the accretion of material onto the system at a rate of at least 1.4 × 10 −6 M ⊙ yr −1 . Conclusions. We conclude that the CH 3 CN emission in SVS13A traces hot gas from a complex structure. This complexity might be affected by a streamer that is possibly infalling and funneling material into the central region.more » « less
An official website of the United States government

