skip to main content


Title: Sensitivity to Hand Offsets and Related Behavior in Virtual Environments Over Time
This work explored how users’ sensitivity to offsets in their avatars’ virtual hands changes as they gain exposure to virtual reality. We conducted an experiment using a two-alternative forced choice (2-AFC) design over the course of four weeks, split into four sessions. The trials in each session had a variety of eight offset distances paired with eight offset directions (across a 2D plane). While we did not find evidence that users became more sensitive to the offsets over time, we did find evidence of behavioral changes. Specifically, participants’ head-hand coordination and completion time varied significantly as the sessions went on. We discuss the implications of both results and how they could influence our understanding of long-term calibration for perception-action coordination in virtual environments.  more » « less
Award ID(s):
1717937
NSF-PAR ID:
10359245
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ACM Transactions on Applied Perception
ISSN:
1544-3558
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    COVID-19 has altered the landscape of teaching and learning. For those in in-service teacher education, workshops have been suspended causing programs to adapt their professional development to a virtual space to avoid indefinite postponement or cancellation. This paradigm shift in the way we conduct learning experiences creates several logistical and pedagogical challenges but also presents an important opportunity to conduct research about how learning happens in these new environments. This paper describes the approach we took to conduct research in a series of virtual workshops aimed at teaching rural elementary teachers about engineering practices and how to teach a unit from an engineering curriculum. Our work explores how engineering concepts and practices are socially constructed through interactions with teachers, students, and artifacts. This approach, called interactional ethnography has been used by the authors and others to learn about engineering teaching and learning in precollege classrooms. The approach relies on collecting data during instruction, such as video and audio recordings, interviews, and artifacts such as journal entries and photos of physical designs. Findings are triangulated by analyzing these data sources. This methodology was going to be applied in an in-person engineering education workshop for rural elementary teachers, however the pandemic forced us to conduct the workshops remotely. Teachers, working in pairs, were sent workshop supplies, and worked together during the training series that took place over Zoom over four days for four hours each session. The paper describes how we collected video and audio of teachers and the facilitators both in whole group and in breakout rooms. Class materials and submissions of photos and evaluations were managed using Google Classroom. Teachers took photos of their work and scanned written materials and submitted them all by email. Slide decks were shared by the users and their group responses were collected in real time. Workshop evaluations were collected after each meeting using Google Forms. Evaluation data suggest that the teachers were engaged by the experience, learned significantly about engineering concepts and the knowledge-producing practices of engineers, and feel confident about applying engineering activities in their classrooms. This methodology should be of interest to the membership for three distinct reasons. First, remote instruction is a reality in the near-term but will likely persist in some form. Although many of us prefer to teach in person, remote learning allows us to reach many more participants, including those living in remote and rural areas who cannot easily attend in-person sessions with engineering educators, so it benefits the field to learn how to teach effectively in this way. Second, it describes an emerging approach to engineering education research. Interactional ethnography has been applied in precollege classrooms, but this paper demonstrates how it can also be used in teacher professional development contexts. Third, based on our application of interactional ethnography to an education setting, readers will learn specifically about how to use online collaborative software and how to collect and organize data sources for research purposes. 
    more » « less
  2. Virtual reality games have grown rapidly in popularity since the first consumer VR head-mounted displays were released in 2016, however comparatively little research has explored how this new medium impacts the experience of players. In this paper, we present a study exploring how user experience changes when playing Minecraft on the desktop and in immersive virtual reality. Fourteen players completed six 45 minute sessions, three played on the desktop and three in VR. The Gaming Experience Questionnaire, the i-Group presence questionnaire, and the Simulator Sickness Questionnaire were administered after each session, and players were interviewed at the end of the experiment. Participants strongly preferred playing Minecraft in VR, despite frustrations with using teleporation as a travel technique and feelings of simulator sickness. Players enjoyed using motion controls, but still continued to use indirect input under certain circumstances. This did not appear to negatively impact feelings of presence. We conclude with four lessons for game developers interested in porting their games to virtual reality. 
    more » « less
  3. As a result of the increased inclusion of engineering and computer science standards for K-6 schools nationwide, there is a need to better understand how teacher educators can help develop preservice teachers’ (PSTs’) teaching self-efficacy in these areas. Ed+gineering provides novel opportunities for PSTs to experience teaching and learning engineering and coding content by building COVID-companion robots. Growing evidence supports robotics as a powerful approach to STEM learning for PSTs. In this study, Ed+gineering examined three cases to explore this overarching question: In what ways did PSTs’ virtual robotics project experience develop their self-efficacy for teaching engineering and coding? Three PST cases were examined, within the context of their work with other team members (i.e., undergraduate engineering student(s), 5th graders). To understand each of three PSTs’ virtual robotics project experiences, multiple data sources were collected and analyzed which includes mid- and post-semester CATME, end of course short-answer reflections, follow up interviews (including a modified Big Five personality inventory), and Zoom session recordings. Elementary PSTs Brenda, Erica, and Sarah experienced various levels of commitment and engagement in their five Zoom sessions. These factors, along with other personal and external influences, contributed to Bandura’s four identified sources of self-efficacy. This study examines these contributing factors to create an initial working model of how PSTs develop teaching self-efficacy. In this conference session, science teacher educators will learn more about this model and pedagogical decisions that seemed to influence PST’s self-efficacy for teaching engineering and computer science. 
    more » « less
  4. Environmental temperature is a widely used variable to describe weather and climate conditions. The use of temperature anomalies to identify variations in climate and weather systems makes temperature a key variable to evaluate not only climate variability but also shifts in ecosystem structural and functional properties. In contrast to terrestrial ecosystems, the assessment of regional temperature anomalies in coastal wetlands is more complex since the local temperature is modulated by hydrology and weather. Thus, it is unknown how the regional free-air temperature (T Free ) is coupled to local temperature anomalies, which can vary across interfaces among vegetation canopy, water, and soil that modify the wetland microclimate regime. Here, we investigated the temperature differences (offsets) at those three interfaces in mangrove-saltmarsh ecotones in coastal Louisiana and South Florida in the northern Gulf of Mexico (2017–2019). We found that the canopy offset (range: 0.2–1.6°C) between T Free and below-canopy temperature (T Canopy ) was caused by the canopy buffering effect. The similar offset values in both Louisiana and Florida underscore the role of vegetation in regulating near-ground energy fluxes. Overall, the inundation depth did not influence soil temperature (T Soil ). The interaction between frequency and duration of inundation, however, significantly modulated T Soil given the presence of water on the wetland soil surface, thus attenuating any short- or long-term changes in the T Canopy and T Free . Extreme weather events—including cold fronts and tropical cyclones—induced high defoliation and weakened canopy buffering, resulting in long-term changes in canopy or soil offsets. These results highlight the need to measure simultaneously the interaction between ecological and climatic processes to reduce uncertainty when modeling macro- and microclimate in coastal areas under a changing climate, especially given the current local temperature anomalies data scarcity. This work advances the coupling of Earth system models to climate models to forecast regional and global climate change and variability along coastal areas. 
    more » « less
  5. Redirected walking techniques use rotational gains to guide users away from physical obstacles as they walk in a virtual world, effectively creating the illusion of a larger virtual space than is physically present. Designers often want to keep users unaware of this manipulation, which is made possible by limitations in human perception that render rotational gains imperceptible below a certain threshold. Many aspects of these thresholds have been studied, however no research has yet considered whether these thresholds may change over time as users gain more experience with them. To study this, we recruited 20 novice VR users (no more than 1 hour of prior experience with an HMD) and provided them with an Oculus Quest to use for four weeks on their own time. They were tasked to complete an activity assessing their sensitivity to rotational gain once each week, in addition to whatever other activities they wanted to perform. No feedback was provided to participants about their performance during each activity, minimizing the possibility of learning effects accounting for any observed changes over time. We observed that participants became significantly more sensitive to rotation gains over time, underscoring the importance of considering prior user experience in applications involving rotational gain, as well as how prior user experience may affect other, broader applications of VR. 
    more » « less