Redirected walking techniques use rotational gains to guide users away from physical obstacles as they walk in a virtual world, effectively creating the illusion of a larger virtual space than is physically present. Designers often want to keep users unaware of this manipulation, which is made possible by limitations in human perception that render rotational gains imperceptible below a certain threshold. Many aspects of these thresholds have been studied, however no research has yet considered whether these thresholds may change over time as users gain more experience with them. To study this, we recruited 20 novice VR users (no more than 1 hour of prior experience with an HMD) and provided them with an Oculus Quest to use for four weeks on their own time. They were tasked to complete an activity assessing their sensitivity to rotational gain once each week, in addition to whatever other activities they wanted to perform. No feedback was provided to participants about their performance during each activity, minimizing the possibility of learning effects accounting for any observed changes over time. We observed that participants became significantly more sensitive to rotation gains over time, underscoring the importance of considering prior user experience in applications involving rotational gain, as well as how prior user experience may affect other, broader applications of VR.
more »
« less
Sensitivity to Hand Offsets and Related Behavior in Virtual Environments Over Time
This work explored how users’ sensitivity to offsets in their avatars’ virtual hands changes as they gain exposure to virtual reality. We conducted an experiment using a two-alternative forced choice (2-AFC) design over the course of four weeks, split into four sessions. The trials in each session had a variety of eight offset distances paired with eight offset directions (across a 2D plane). While we did not find evidence that users became more sensitive to the offsets over time, we did find evidence of behavioral changes. Specifically, participants’ head-hand coordination and completion time varied significantly as the sessions went on. We discuss the implications of both results and how they could influence our understanding of long-term calibration for perception-action coordination in virtual environments.
more »
« less
- Award ID(s):
- 1717937
- PAR ID:
- 10359245
- Date Published:
- Journal Name:
- ACM Transactions on Applied Perception
- ISSN:
- 1544-3558
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Guidelines on Successfully Porting Non-Immersive Games to Virtual Reality: A Case Study in MinecraftVirtual reality games have grown rapidly in popularity since the first consumer VR head-mounted displays were released in 2016, however comparatively little research has explored how this new medium impacts the experience of players. In this paper, we present a study exploring how user experience changes when playing Minecraft on the desktop and in immersive virtual reality. Fourteen players completed six 45 minute sessions, three played on the desktop and three in VR. The Gaming Experience Questionnaire, the i-Group presence questionnaire, and the Simulator Sickness Questionnaire were administered after each session, and players were interviewed at the end of the experiment. Participants strongly preferred playing Minecraft in VR, despite frustrations with using teleporation as a travel technique and feelings of simulator sickness. Players enjoyed using motion controls, but still continued to use indirect input under certain circumstances. This did not appear to negatively impact feelings of presence. We conclude with four lessons for game developers interested in porting their games to virtual reality.more » « less
-
Abstract Carbon offsets are widely used by individuals, corporations, and governments to mitigate their greenhouse gas emissions on the assumption that offsets reflect equivalent climate benefits achieved elsewhere. These climate‐equivalence claims depend on offsets providing real and additional climate benefits beyond what would have happened, counterfactually, without the offsets project. Here, we evaluate the design of California's prominent forest carbon offsets program and demonstrate that its climate‐equivalence claims fall far short on the basis of directly observable evidence. By design, California's program awards large volumes of offset credits to forest projects with carbon stocks that exceed regional averages. This paradigm allows for adverse selection, which could occur if project developers preferentially select forests that are ecologically distinct from unrepresentative regional averages. By digitizing and analyzing comprehensive offset project records alongside detailed forest inventory data, we provide direct evidence that comparing projects against coarse regional carbon averages has led to systematic over‐crediting of 30.0 million tCO2e (90% CI: 20.5–38.6 million tCO2e) or 29.4% of the credits we analyzed (90% CI: 20.1%–37.8%). These excess credits are worth an estimated $410 million (90% CI: $280–$528 million) at recent market prices. Rather than improve forest management to store additional carbon, California's forest offsets program creates incentives to generate offset credits that do not reflect real climate benefits.more » « less
-
null (Ed.)ABSTRACT We study the projected spatial offset between the ultraviolet continuum and Ly α emission for 65 lensed and unlensed galaxies in the Epoch of Reionization (5 ≤ z ≤ 7), the first such study at these redshifts, in order to understand the potential for these offsets to confuse estimates of the Ly α properties of galaxies observed in slit spectroscopy. While we find that ∼40 per cent of galaxies in our sample show significant projected spatial offsets ($$|\Delta _{\rm {Ly}\alpha -\rm {UV}}|$$), we find a relatively modest average projected offset of $$|\widetilde{\Delta }_{\rm {Ly}\alpha -\rm {UV}}|$$ = 0.61 ± 0.08 proper kpc for the entire sample. A small fraction of our sample, ∼10 per cent, exhibit offsets in excess of 2 proper kpc, with offsets seen up to ∼4 proper kpc, sizes that are considerably larger than the effective radii of typical galaxies at these redshifts. An internal comparison and a comparison to studies at lower redshift yielded no significant evidence of evolution of $$|\Delta _{\rm {Ly}\alpha -\rm {UV}}|$$ with redshift. In our sample, ultraviolet (UV)-bright galaxies ($$\widetilde{L_{\mathrm{ UV}}}/L^{\ast }_{\mathrm{ UV}}=0.67$$) showed offsets a factor of three greater than their fainter counterparts ($$\widetilde{L_{\mathrm{ UV}}}/L^{\ast }_{\mathrm{ UV}}=0.10$$), 0.89 ± 0.18 versus 0.27 ± 0.05 proper kpc, respectively. The presence of companion galaxies and early stage merging activity appeared to be unlikely causes of these offsets. Rather, these offsets appear consistent with a scenario in which internal anisotropic processes resulting from stellar feedback, which is stronger in UV-brighter galaxies, facilitate Ly α fluorescence and/or backscattering from nearby or outflowing gas. The reduction in the Ly α flux due to offsets was quantified. It was found that the differential loss of Ly α photons for galaxies with average offsets is not, if corrected for, a limiting factor for all but the narrowest slit widths (<0.4 arcsec). However, for the largest offsets, if they are mostly perpendicular to the slit major axis, slit losses were found to be extremely severe in cases where slit widths of ≤1 arcsec were employed, such as those planned for James Webb Space Telescope/NIRSpec observations.more » « less
-
The distribution of offsets between the brightest cluster galaxies of galaxy clusters and the centroid of their dark matter distributions is a promising probe of the underlying dark matter physics. In particular, since this distribution is sensitive to the shape of the potential in galaxy cluster cores, it constitutes a test of dark matter self-interaction on the largest mass scales in the universe. We examine these offsets in three suites of modern cosmological simulations; IllustrisTNG, MillenniumTNG and BAHAMAS. For clusters above , we examine the dependence of the offset distribution on gravitational softening length, the method used to identify centroids, redshift, mass, baryonic physics, and establish the stability of our results with respect to various nuisance parameter choices. We find that offsets are overwhelmingly measured to be smaller than the minimum converged length scale in each simulation, with a median offset of in the highest resolution simulation considered, TNG300-1, which uses a gravitational softening length of . We also find that centroids identified via source extraction on smoothed dark matter and stellar particle data are consistent with the potential minimum, but that observationally relevant methods sensitive to cluster strong gravitational lensing scales, or those using the the “light traces mass” approach, in this context meaning gas is used as a tracer for the potential, can overestimate offsets by factors of and , respectively. This has the potential to reduce tensions with existing offset measurements which have served as evidence for a nonzero dark matter self-interaction cross section.more » « less
An official website of the United States government

