skip to main content

Title: Identifying RR Lyrae in the ZTF DR3 data set

We present an RR Lyrae (RRL) catalogue based on the combination of the third data release of the Zwicky Transient Facility (ZTF DR3) and Gaia EDR3. We use a multistep classification pipeline relying on the Fourier decomposition fitting to the multiband ZTF light curves and random forest classification. The resulting catalogue contains 71 755 RRLs with period and light-curve parameter measurements and has a completeness of 0.92 and a purity of 0.92 with respect to the Specific Objects Study Gaia DR2 RRLs. The catalogue covers the Northern sky with declination ≥−28°, its completeness is ≳0.8 for heliocentric distance ≤80 kpc, and the most distant RRL is at 132 kpc. Compared with several other RRL catalogues covering the Northern sky, our catalogue has more RRLs around the Galactic halo and is more complete at low-Galactic latitude areas. Analysing the spatial distribution of RRL in the catalogue reveals the previously known major overdensities of the Galactic halo, such as the Virgo overdensity and the Hercules–Aquila Cloud, with some evidence of an association between the two. We also analyse the Oosterhoff fraction differences throughout the halo, comparing it with the density distribution, finding increasing Oosterhoff I fraction at the elliptical radii between 16 and 32 kpc more » and some evidence of different Oosterhoff fractions across various halo substructures.

« less
Award ID(s):
1813881 1909584
Publication Date:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range or eLocation-ID:
p. 3575-3588
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this

    The Milky Way halo is one of the few galactic haloes that provides a unique insight into galaxy formation by resolved stellar populations. Here, we present a catalogue of ∼47 million halo stars selected independent of parallax and line-of-sight velocities, using a combination of Gaia DR3 proper motion and photometry by means of their reduced proper motion. We select high tangential velocity (halo) main sequence stars and fit distances to them using their simple colour-absolute-magnitude relation. This sample reaches out to ∼21 kpc with a median distance of 6.6 kpc thereby probing much further out than would be possible using reliable Gaia parallaxes. The typical uncertainty in their distances is $0.57_{-0.26}^{+0.56}$ kpc. Using the colour range 0.45 < (G0 − GRP, 0) < 0.715, where the main sequence is narrower, gives an even better accuracy down to $0.39_{-0.12}^{+0.18}$ kpc in distance. The median velocity uncertainty for stars within this colour range is 15.5 km s−1. The distribution of these sources in the sky, together with their tangential component velocities, are very well-suited to study retrograde substructures. We explore the selection of two complex retrograde streams: GD-1 and Jhelum. For these streams, we resolve the gaps, wiggles and density breaks reported in the literature moremore »clearly. We also illustrate the effect of the kinematic selection bias towards high proper motion stars and incompleteness at larger distances due to Gaia’s scanning law. These examples showcase how the full RPM catalogue made available here can help us paint a more detailed picture of the build-up of the Milky Way halo.

    « less
  2. Abstract We report the detection of three RR Lyrae (RRL) stars (two RRc and one RRab) in the ultra-faint dwarf (UFD) galaxy Centaurus I (Cen I) and two Milky Way (MW) δ Scuti/SX Phoenicis stars based on multi-epoch giz DECam observations. The two RRc stars are located within two times the half-light radius ( r h ) of Cen I, while the RRab star (CenI-V3) is at ∼6 r h . The presence of three distant RRL stars clustered this tightly in space represents a 4.7 σ excess relative to the smooth distribution of RRL in the Galactic halo. Using the newly detected RRL stars, we obtain a distance modulus to Cen I of μ 0 = 20.354 ± 0.002 mag ( σ = 0.03 mag), a heliocentric distance of D ⊙ = 117.7 ± 0.1 kpc ( σ = 1.6 kpc), with systematic errors of 0.07 mag and 4 kpc. The location of the Cen I RRL stars in the Bailey diagram is in agreement with other UFD galaxies (mainly Oosterhoff II). Finally, we study the relative rate of RRc+RRd (RRcd) stars ( f cd ) in UFD and classical dwarf galaxies. The full sample of MW dwarf galaxiesmore »gives a mean of f cd = 0.28. While several UFD galaxies, such as Cen I, present higher RRcd ratios, if we combine the RRL populations of all UFD galaxies, the RRcd ratio is similar to the one obtained for the classical dwarfs ( f cd ∼ 0.3). Therefore, there is no evidence for a different fraction of RRcd stars in UFD and classical dwarf galaxies.« less
  3. ABSTRACT We characterize an all-sky catalogue of ∼8400 δ Scuti variables in ASAS-SN, which includes ∼3300 new discoveries. Using distances from Gaia DR2, we derive period–luminosity relationships for both the fundamental mode and overtone pulsators in the WJK, V, Gaia DR2 G, J, H, Ks, and W1 bands. We find that the overtone pulsators have a dominant overtone mode, with many sources pulsating in the second overtone or higher order modes. The fundamental mode pulsators have metallicity-dependent periods, with log10(P) ∼ −1.1 for $\rm [Fe/H]\lt -0.3$ and log10(P) ∼ −0.9 for $\rm [Fe/H]\gt 0$, which leads to a period-dependent scale height. Stars with $P\gt 0.100\, \rm d$ are predominantly located close to the Galactic disc ($\rm |\mathit{ Z}|\lt 0.5\, kpc$). The median period at a scale height of $Z\sim 0\, \rm kpc$ also increases with the Galactocentric radius R, from log10(P) ∼ −0.94 for sources with $R\gt 9\, \rm kpc$ to log10(P) ∼ −0.85 for sources with $R\lt 7\, \rm kpc$, which is indicative of a radial metallicity gradient. To illustrate potential applications of this all-sky catalogue, we obtained 30 min cadence, image subtraction TESS light curves for a sample of 10 fundamental mode and 10 overtone δ Scuti stars discoveredmore »by ASAS-SN. From this sample, we identified two new δ Scuti eclipsing binaries, ASASSN-V J071855.62−434247.3 and ASASSN-V J170344.20−615941.2 with short orbital periods of Porb = 2.6096 and 2.5347 d, respectively.« less

    We present radial velocities for five member stars of the recently discovered young (age ≃ 100−150 Myr) stellar system Price-Whelan 1 (PW 1), which is located far away in the Galactic Halo (D≃ 29 kpc, Z≃ 15 kpc), and that is probably associated with the leading arm (LA) of the Magellanic Stream. We measure the systemic radial velocity of PW 1, Vr = 275 ± 10 km s−1, significantly larger than the velocity of the LA gas in the same direction. We re-discuss the main properties and the origin of this system in the light of these new observations, computing the orbit of the system and comparing its velocity with that of the H i in its surroundings. We show that the bulk of the gas at the velocity of the stars is more than 10 deg (5 kpc) away from PW 1 and the velocity difference between the gas and the stars becomes larger as gas closer to the stars is considered. We discuss the possibilities that (1) the parent gas cloud was dissolved by the interaction with the Galactic gas, and (2) that the parent cloud is the high-velocity cloud (HVC) 287.5+22.5 + 240, lagging behind the stellar system by ≃ 25 km s−1 and ≃10 deg ≃ 5 kpc. This HVC, which is part of the LA, hasmore »metallicity similar to PW 1, displays a strong magnetic field that should help to stabilize the cloud against ram pressure, and shows traces of molecular hydrogen. We also show that the system is constituted of three distinct pieces that do not differ only by position in the sky but also by stellar content.

    « less
  5. Abstract

    The statistics of galactic-scale quasar pairs can elucidate our understanding of the dynamical evolution of supermassive black hole (SMBH) pairs, the duty cycles of quasar activity in mergers, or even the nature of dark matter, but they have been challenging to measure at cosmic noon, the prime epoch of massive galaxy and SMBH formation. Here we measure a double quasar fraction of ∼6.2 ± 0.5 × 10−4integrated over ∼0.″3–3″ separations (projected physical separations of ∼3–30 kpc atz∼ 2) in luminous (Lbol> 1045.8erg s−1) unobscured quasars at 1.5 <z< 3.5 using Gaia EDR3-resolved pairs around SDSS DR16 quasars. The measurement was based on a sample of 60 Gaia-resolved double quasars (out of 487 Gaia pairs dominated by quasar+star superpositions) at these separations, corrected for pair completeness in Gaia, which we quantify as functions of pair separation, magnitude of the primary, and magnitude contrast. The double quasar fraction increases toward smaller separations by a factor of ∼5 over these scales. The division between physical quasar pairs and lensed quasars in our sample is currently unknown, requiring dedicated follow-up observations (in particular, deep, subarcsecond-resolution IR imaging for the closest pairs). Intriguingly, at this point, the observed pair statistics are in rough agreementmore »with theoretical predictions both for the lensed quasar population in mock catalogs and for dual quasars in cosmological hydrodynamic simulations. Upcoming wide-field imaging/spectroscopic space missions such as Euclid, CSST, and Roman, combined with targeted follow-up observations, will conclusively measure the abundances and host galaxy properties of galactic-scale quasar pairs, offset AGNs, and subarcsecond lensed quasars across cosmic time.

    « less