Comparing compositional models of the terrestrial planets provides insights into physicochemical processes that produced planet-scale similarities and differences. The widely accepted compositional model for Mars assumes Mn and more refractory elements are in CI chondrite proportions in the planet, including Fe, Mg, and Si, which along with O make up >90% of the mass of Mars. However, recent improvements in our understandings on the composition of the solar photosphere and meteorites challenge the use of CI chondrite as an analog of Mars. Here we present an alternative model composition for Mars that avoids such an assumption and is based on data from Martian meteorites and spacecraft observations. Our modeling method was previously applied to predict the Earth’s composition. The model establishes the absolute abundances of refractory lithophile elements in the bulk silicate Mars (BSM) at 2.26 times higher than that in CI carbonaceous chondrites. Relative to this chondritic composition, Mars has a systematic depletion in moderately volatile lithophile elements as a function of their condensation temperatures. Given this finding, we constrain the abundances of siderophile and chalcophile elements in the bulkMars and its core. The Martian volatility trend is consistent with <7 wt% S in its core, which is significantly lower than that assumed in most core models (i.e., >10 wt% S). Furthermore, the occurrence of ringwoodite at the Martian core-mantle boundary might have contributed to the partitioning of O and H into the Martian core. 
                        more » 
                        « less   
                    
                            
                            The Lithophile Element Budget of Earth's Core
                        
                    
    
            Abstract The relative composition of Earth's core and mantle were set during core formation. By determining how elements partition between metal and silicate at high pressures and temperatures, measurements of the mantle composition and geophysical observations of the core can be used to understand the mechanisms by which Earth formed. Here we present the results of metal‐silicate partitioning experiments for a range of nominally lithophile elements (Al, Ca, K, Mg, O, Si, Th, and U) and S to 85 GPa and up to 5400 K. With our results and a compilation of literature data, we developed a parameterization for partitioning that accounts for compositional dependencies in both the metal and silicate phases. Using this parameterization in a range of planetary growth models, we find that, in general, lithophile element partitioning into the metallic phase is enhanced at high temperatures. The relative abundances of FeO, SiO2, and MgO in the mantle vary significantly between planetary growth models, and the mantle abundances of these elements can be used to provide important constraints on Earth's accretion. To match Earth's core mass and mantle composition, Earth's building blocks must have been enriched in Fe and depleted in Si compared with CI chondrites. Finally, too little Mg, Si, and O are partitioned into the core for precipitation of oxides to be a major source of energy for the geodynamo. In contrast, several ppb of U can be partitioned into the core at high temperatures, and this energy source must be accounted for in thermal evolution models. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10363556
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geochemistry, Geophysics, Geosystems
- Volume:
- 23
- Issue:
- 2
- ISSN:
- 1525-2027
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Extensive experimental studies show that all major rock-forming elements (e.g., Si, Mg, Fe, Ca, Al, Na, K) dissolve in steam to a greater or lesser extent. We use these results to compute chemical equilibrium abundances of rocky-element-bearing gases in steam atmospheres equilibrated with silicate magma oceans. Rocky elements partition into steam atmospheres as volatile hydroxide gases (e.g., Si(OH)4, Mg(OH)2, Fe(OH)2, Ni(OH)2, Al(OH)3, Ca(OH)2, NaOH, KOH) and via reaction with HF and HCl as volatile halide gases (e.g., NaCl, KCl, CaFOH, CaClOH, FAl(OH)2) in much larger amounts than expected from their vapor pressures over volatile-free solid or molten rock at high temperatures expected for steam atmospheres on the early Earth and hot rocky exoplanets. We quantitatively compute the extent of fractional vaporization by defining gas/magma distribution coefficients and show that Earth's subsolar Si/Mg ratio may be due to loss of a primordial steam atmosphere. We conclude that hot rocky exoplanets that are undergoing or have undergone escape of steam-bearing atmospheres may experience fractional vaporization and loss of Si, Mg, Fe, Ni, Al, Ca, Na, and K. This loss can modify their bulk composition, density, heat balance, and interior structure.more » « less
- 
            Abstract High pressure and temperature experiments were carried out on the oxide mixtures corresponding to the bridgmanite stoichiometry under the hydrous shallow lower mantle conditions (24–25 GPa and 1673–1873 K with 5–10 wt. % of water in the starting material). Oxide mixtures investigated correspond to MgSiO3, (Mg, Fe)SiO3, (Mg, Al, Si)O3, and (Mg, Fe, Al, Si)O3. Melting was observed in all runs. Partitioning of various elements, including Mg, Fe, Si, and H is investigated. Melting under hydrous lower mantle conditions leads to increased (Mg + Fe)O/SiO2in the melt compared to the residual solids. The residual solids often contain a large amount of stishovite, and the melt contains higher (Mg,Fe)O/SiO2ratio than the initial material. (Mg + Fe)O‐rich hydrous melt could explain the low‐velocity anomalies observed in the shallow lower mantle and a large amount of stishovite in the residual solid may be responsible for the scattering of seismic waves in the mid‐lower mantle and may explain the “stishovite paradox. Since stishovite‐rich materials are formed only when silica‐rich source rock (MORB) is melted (not a typical peridotitic rock [bulk silicate Earth]), seismic scattering in the lower mantle provides a clue on the circulation of subducted MORB materials. To estimate hydrogen content, we use a new method of estimating the water content of unquenchable melts, and also propose a new interpretation of the significance of superhydrous phase B inclusions in bridgmanite. The results provide revised values of water partitioning between solid minerals and hydrous melts that are substantially higher than previous estimates.more » « less
- 
            We present a reanalysis of the K2-106 transiting planetary system, with a focus on the composition of K2-106b, an ultra-short-period, super-Mercury candidate. We globally model existing photometric and radial velocity data and derive a planetary mass and radius for K2-106b of Mp = 8.53 ± 1.02 M⊕ and = - + Rp 1.71 0.057 RÅ 0.069 , which leads to a density of r = - + 9.4 p 1.5 1.6 g cm−3 , a significantly lower value than previously reported in the literature. We use planet interior models that assume a two-layer planet comprised of a liquid, pure Fe core and an iron-free, MgSiO3 mantle, and we determine that the range of the core mass fractions are consistent with the observed mass and radius. We use existing high-resolution spectra of the host star to derive the Fe/Mg/Si abundances ([Fe/ H] = −0.03 ± 0.01, [Mg/H] = 0.04 ± 0.02, [Si/H] = 0.03 ± 0.06) to infer the composition of K2-106b. We find that K2-106b has a density and core mass fraction ( - + 44 %15 12 ) consistent with that of Earth (CMF⊕ = 32%). Furthermore, its composition is consistent with what is expected, assuming that it reflects the relative refractory abundances of its host star. K2-106b is therefore unlikely to be a super-Mercury, as has been suggested in previous literature.more » « less
- 
            Abstract Volatiles from the solar nebula are known to be present in Earth's deep mantle. The core also may contain solar nebula‐derived volatiles, but in unknown amounts. Here we use calculations of volatile ingassing and degassing to estimate the abundance of primordial3He now in the core and track the rate of3He exchange between the core and mantle through Earth history. We apply an ingassing model that includes a silicate magma ocean and an iron‐rich proto‐core coupled to a nebular atmosphere of solar composition to calculate the amounts of3He acquired by the mantle and core during accretion and core formation. Using experimentally determined partitioning between core‐forming metals and silicate magma, we find that dissolution from the nebular atmosphere deposits one or more petagrams of3He into the proto‐core. Following accretion,3He exchange depends on the convective history of the coupled core‐mantle system. We combine determinations of the present‐day surface3He flux with estimates of the present‐day mantle3He abundance, mantle and core heat fluxes, and our ingassed3He abundances in a convective degassing model. According to this model, the mantle3He abundance is evolving toward a statistical steady state, in which surface losses are compensated by enrichments from the core.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
