Abstract This work provides a detailed multi‐component analysis of aromaticity in monosubstituted (X = CH3, C, C, NH2, NH−, NH+, OH, O−, and O+) andpara‐homodisubstituted (X = CH3, CH2, NH2, NH, OH, and O) benzene derivatives. We investigate the effects of substituents using single‐reference (B3LYP/DFT) and multireference (CASSCF/MRCI) methods, focusing on structural (HOMA), vibrational (AI(vib)), topological (ELFπ), electronic (MCI), magnetic (NICS), and stability (S0–T1splitting) properties. The findings reveal that appropriateπ‐electron‐donating andπ‐electron‐accepting substituents with suitable size and symmetry can interact with theπ‐system of the ring, significantly influencingπ‐electron delocalization. While the charge factor has a minimal impact onπ‐electron delocalization, the presence of apzorbital capable of interacting with theπ‐electron delocalization is the primary factor leading to a deviation from the typical aromaticity characteristics observed in benzene.
more »
« less
Influence of Substituents in the Benzene Ring on the Halogen Bond of Iodobenzene with Ammonia
Abstract The effects on the C−I⋅⋅N halogen bond between iodobenzene and NH3of placing various substituents on the phenyl ring are monitored by quantum calculations. Substituents R=N(CH3)2, NH2, CH3, OCH3, COCH3, Cl, F, COH, CN, and NO2were each placed ortho, meta, and para to the I. The depth of the σ‐hole on I is deepened as R becomes more electron‐withdrawing which is reflected in a strengthening of the halogen bond, which varied between 3.3 and 5.5 kcal mol−1. In most cases, the ortho placement yields the largest perturbation, followed by meta and then para, but this trend is not universal. Parallel to these substituent effects is a progressive lengthening of the covalent C−I bond. Formation of the halogen bond reduces the NMR chemical shielding of all three nuclei directly involved in the C−I⋅⋅N interaction. The deshielding of the electron donor N is most closely correlated with the strength of the bond, as is the coupling constant between I and N, so both have potential use as spectroscopic measures of halogen bond strength.
more »
« less
- Award ID(s):
- 1954310
- PAR ID:
- 10364026
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- ChemPhysChem
- Volume:
- 23
- Issue:
- 6
- ISSN:
- 1439-4235
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The lone pair of the N atom is a common electron donor in noncovalent bonds. Quantum calculations examine how various aspects of the base on which the N is located affect the strength and other properties of complexes formed with Lewis acids FH, FBr, F2Se, and F3As that respectively encompass hydrogen, halogen, chalcogen, and pnicogen bonds. In most cases the halogen bond is the strongest, followed in order by chalcogen, hydrogen, and pnicogen. The noncovalent bond strength increases in the sp23order of hybridization of N. Replacement of H substituents on the base by a methyl group or substituting N by C atom to which the base N is attached, strengthens the bond. The strongest bonds occur for trimethylamine and the weakest for N2.more » « less
-
Abstract The nature of halogen bonding under different dielectric conditions remains underexplored, especially for inorganic systems. The structural and energetic properties of model halogen bonded complexes (R3M−I—NH3for R=H and F, and M=C, Si, and Ge) are examined computationally for relative permittivities between 1 and 109 using an implicit solvent model. We confirm and assess the exceptionally high maximum potentials at the sigma hole on I (Vs,max) in F3Ge−I relative to cases where M=C or Si. In particular, Ge far outperforms Si in mediating inductive effects. Linear relationships, typically with R2>0.97, are identified betweenVs,max, the full point charge on I in R3M−I, and the interaction energy, and optimized I—N distance in the complexes. An anomalous trend is identified in which, for each M, F3M−I—NH3becomeslessstable as the optimized I—N distance getsshorterin different dielectric environments; it is explained using the F−I—NH3complex as a reference.more » « less
-
The amino group of 2-amino-5-(4-halophenyl)-1,3,4-chalcogenadiazole has been replaced with bromo/iodo substituents to obtain a library of four compositionally related compounds. These are 2-iodo-5-(4-iodophenyl)-1,3,4-thiadiazole, C8H4I2N2S, 2-bromo-5-(4-bromophenyl)-1,3,4-selenadiazole, C8H4Br2N2Se, 2-bromo-5-(4-iodophenyl)-1,3,4-selenadiazole, C8H4BrIN2Se, and 2-bromo-5-(4-iodophenyl)-1,3,4-thiadiazole, C8H4BrIN2S. All were isostructural and contained bifurcated Ch...N (Ch is chalcogen) andX...X(Xis halogen) interactions forming a zigzag packing motif. The noncovalent Ch...N interaction between the chalcogen-bond donor and the best-acceptor N atom appeared preferentially instead of a possible halogen bond to the same N atom. Hirshfeld surface analysis and energy framework calculations showed that, collectively, a bifurcated chalcogen bond was stronger than halogen bonding and this is more structurally influential in this system.more » « less
-
Abstract A chalcogen atom Y contains two separate σ‐holes when in a R1YR2molecular bonding pattern. Quantum chemical calculations consider competition between these two σ‐holes to engage in a chalcogen bond (ChB) with a NH3base. R groups considered include F, Br, I, and tert‐butyl (tBu). Also examined is the situation where the Y lies within a chalcogenazole ring, where its neighbors are C and N. Both electron‐withdrawing substituents R1and R2act cooperatively to deepen the two σ‐holes, but the deeper of the two holes consistently lies opposite to the more electron‐withdrawing group, and is also favored to form a stronger ChB. The formation of two simultaneous ChBs in a triad requires the Y atom to act as double electron acceptor, and so anti‐cooperativity weakens each bond relative to the simple dyad. This effect is such that some of the shallower σ‐holes are unable to form a ChB at all when a base occupies the other site.more » « less