skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Title: Techniques for blocking the propagation of two simultaneous contagions over networks using a graph dynamical systems framework
Abstract We consider the simultaneous propagation of two contagions over a social network. We assume a threshold model for the propagation of the two contagions and use the formal framework of discrete dynamical systems. In particular, we study an optimization problem where the goal is to minimize the total number of new infections subject to a budget constraint on the total number of available vaccinations for the contagions. While this problem has been considered in the literature for a single contagion, our work considers the simultaneous propagation of two contagions. This optimization problem is NP-hard. We present two main solution approaches for the problem, namely an integer linear programming (ILP) formulation to obtain optimal solutions and a heuristic based on a generalization of the set cover problem. We carry out a comprehensive experimental evaluation of our solution approaches using many real-world networks. The experimental results show that our heuristic algorithm produces solutions that are close to the optimal solution and runs several orders of magnitude faster than the ILP-based approach for obtaining optimal solutions. We also carry out sensitivity studies of our heuristic algorithm.  more » « less
Award ID(s):
1443054 1633028 1745207 1916805 1918656
PAR ID:
10376924
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Network Science
Volume:
10
Issue:
3
ISSN:
2050-1242
Page Range / eLocation ID:
234 to 260
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We consider the simultaneous propagation of two contagions over a social network. We assume a threshold model for the propagation of the two contagions and use the formal framework of discrete dynamical systems. In particular, we study an optimization problem where the goal is to minimize the total number of infected nodes subject to a budget constraint on the total number of nodes that can be vaccinated. While this problem has been considered in the literature for a single contagion, our work considers the simultaneous propagation of two contagions. Since the optimization problem is NP-hard, we develop a heuristic based on a generalization of the set cover problem. Using experiments on three real-world networks, we compare the performance of the heuristic with some baseline methods. 
    more » « less
  2. null (Ed.)
    We consider the simultaneous propagation of two contagions over a social network. We assume a threshold model for the propagation of the two contagions and use the formal framework of discrete dynamical systems. In particular, we study an optimization problem where the goal is to minimize the total number of infected nodes subject to a budget constraint on the total number of nodes that can be vaccinated. While this problem has been considered in the literature for a single contagion, our work considers the simultaneous propagation of two contagions. Since the optimization problem is NP-hard, we develop a heuristic based on a generalization of the set cover problem. Using experiments on three real-world networks, we compare the performance of the heuristic with some baseline methods. 
    more » « less
  3. Networked discrete dynamical systems are often used to model the spread of contagions and decision-making by agents in coordination games. Fixed points of such dynamical systems represent configurations to which the system converges. In the dissemination of undesirable contagions (such as rumors and misinformation), convergence to fixed points with a small number of affected nodes is a desirable goal. Motivated by such considerations, we formulate a novel optimization problem of finding a nontrivial fixed point of the system with the minimum number of affected nodes. We establish that, unless P = NP, there is no polynomial-time algorithm for approximating a solution to this problem to within the factor n^(1 - epsilon) for any constant epsilon > 0. To cope with this computational intractability, we identify several special cases for which the problem can be solved efficiently. Further, we introduce an integer linear program to address the problem for networks of reasonable sizes. For solving the problem on larger networks, we propose a general heuristic framework along with greedy selection methods. Extensive experimental results on real-world networks demonstrate the effectiveness of the proposed heuristics. A full version of the manuscript, source code and data areavailable at: https://github.com/bridgelessqiu/NMIN-FPE 
    more » « less
  4. This paper proposes a new formulation for the school bus scheduling problem (SBSP), which optimizes school start times and bus operation times to minimize transportation cost. The goal is to minimize the number of buses to serve all bus routes such that each route arrives in a time window before school starts. We show that introducing context-specific features, common in many school districts, can lead to a new time-indexed integer linear programming (ILP) formulation. Based on a strengthened version of the linear relaxation of the ILP, we develop a dependent randomized rounding algorithm that yields near-optimal solutions for large-scale problem instances. The efficient formulation and solution approach enable quick generation of multiple solutions to facilitate strategic planning, which we demonstrate with data from two public school districts in the United States. We also generalize our methodologies to solve a robust version of the SBSP. 
    more » « less
  5. Yann, Ponty (Ed.)
    Abstract Motivation The study of the evolutionary history of biological networks enables deep functional understanding of various bio-molecular processes. Network growth models, such as the Duplication–Mutation with Complementarity (DMC) model, provide a principled approach to characterizing the evolution of protein–protein interactions (PPIs) based on duplication and divergence. Current methods for model-based ancestral network reconstruction primarily use greedy heuristics and yield sub-optimal solutions. Results We present a new Integer Linear Programming (ILP) solution for maximum likelihood reconstruction of ancestral PPI networks using the DMC model. We prove the correctness of our solution that is designed to find the optimal solution. It can also use efficient heuristics from general-purpose ILP solvers to obtain multiple optimal and near-optimal solutions that may be useful in many applications. Experiments on synthetic data show that our ILP obtains solutions with higher likelihood than those from previous methods, and is robust to noise and model mismatch. We evaluate our algorithm on two real PPI networks, with proteins from the families of bZIP transcription factors and the Commander complex. On both the networks, solutions from our ILP have higher likelihood and are in better agreement with independent biological evidence from other studies. Availability and implementation A Python implementation is available at https://bitbucket.org/cdal/network-reconstruction. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less