A geo-marketplace allows users to be paid for their location data. Users concerned about privacy may want to charge more for data that pinpoints their location accurately, but may charge less for data that is more vague. A buyer would prefer to minimize data costs, but may have to spend more to get the necessary level of accuracy. We call this interplay between privacy, utility, and price spatial privacy pricing. We formalize the issues mathematically with an example problem of a buyer deciding whether or not to open a restaurant by purchasing location data to determine if the potential number of customers is sufficient to open. The problem is expressed as a sequential decision making problem, where the buyer first makes a series of decisions about which data to buy and concludes with a decision about opening the restaurant or not. We present two algorithms to solve this problem, including experiments that show they perform better than baselines.
more »
« less
Preserving Buyer-Privacy in Decentralized Supply Chain Marketplaces
Technology is being used increasingly for lowering the trust barrier in domains where collaboration and cooperation are necessary, but reliability and efficiency are critical due to high stakes. An example is an industrial marketplace where many suppliers must participate in production while ensuring reliable outcomes; hence, partnerships must be pursued with care. Online marketplaces like Xometry facilitate partnership formation by vetting suppliers and mediating the marketplace. How- ever, such an approach requires that all trust be vested in the middleman. This centralizes control, making the system vulnerable to being biased toward specific providers. The use of blockchains is now being explored to bridge the trust gap needed to support decentralizing marketplaces, allowing suppliers and customers to interact more directly by using the information on the blockchain. A typical scenario is the need to preserve privacy in certain interactions initiated by the buyer (e.g., protecting a buyer’s intellectual property during outsourcing negotiations). In this work, we initiate the formal study of matching between suppliers and buyers when buyer-privacy is required for some marketplace interactions and make the following contributions. First, we devise a formal security definition for private interactive matching in the Universally Composable (UC) Model that captures the privacy and correctness properties expected in specific supply chain marketplace interactions. Second, we provide a lean protocol based on any programmable blockchain, anonymous group signatures, and public-key encryption. Finally, we implement the protocol by instantiating some of the blockchain logic by extending the BigChainDB blockchain platform.
more »
« less
- Award ID(s):
- 1764025
- PAR ID:
- 10378263
- Editor(s):
- Nicola Dragoni, Joaquin Garcia-Alfaro
- Date Published:
- Journal Name:
- CBT: International Workshop on Cryptocurrencies and Blockchain Technology
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A core tension in the operations of online marketplaces is between segmentation (wherein platforms can increase revenue by segmenting the market into ever smaller sub-markets) and thickness (wherein the size of the sub-market affects the utility experienced by an agent). An important example of this is in dynamic online marketplaces, where buyers and sellers, in addition to preferences for different matches, also have finite patience (or deadlines) for being matched. We formalize this trade-off via a novel optimization problem that we term as 'Two-sided Facility Location': we consider a market wherein agents arrive at nodes embedded in an underlying metric space, where the distance between a buyer and seller captures the quality of the corresponding match. The platform posts prices and wages at the nodes, and opens a set of virtual clearinghouses where agents are routed for matching. To ensure high match-quality, the platform imposes a distance constraint between an agent and its clearinghouse; to ensure thickness, the platform requires the flow to any clearinghouse be at least a pre-specified lower bound. Subject to these constraints, the goal of the platform is to maximize the social surplus subject to weak budget balance, i.e., profit being non-negative. Our work characterizes the complexity of this problem by providing both hardness results as well as algorithms for this setting; in particular, we present an algorithm that for any constant ε > 0 yields a (1 + ε ) approximation for the gains from trade, while relaxing the match quality (i.e., maximum distance of any match) by a constant factor.more » « less
-
While cloud computing is the current standard for outsourcing computation, it can be prohibitively expensive for cities and infrastructure operators to deploy services. At the same time, there are underutilized computing resources within cities and local edge-computing deployments. Using these slack resources may enable significantly lower pricing than comparable cloud computing; such resources would incur minimal marginal expenditure since their deployment and operation are mostly sunk costs. However, there are challenges associated with using these resources. First, they are not effectively aggregated or provisioned. Second, there is a lack of trust between customers and suppliers of computing resources, given that they are distinct stakeholders and behave according to their own interests. Third, delays in processing inputs may diminish the value of the applications. To resolve these challenges, we introduce an architecture combining a distributed trusted computing mechanism, such as a blockchain, with an efficient messaging system like Apache Pulsar. Using this architecture, we design a decentralized computation market where customers and suppliers make offers to deploy and host applications. The proposed architecture can be realized using any trusted computing mechanism that supports smart contracts, and any messaging framework with the necessary features. This combination ensures that the market is robust without incurring the input processing delays that limit other blockchain-based solutions. We evaluate the market protocol using game-theoretic analysis to show that deviation from the protocol is discouraged. Finally, we assess the performance of a prototype implementation based on experiments with a streaming computer-vision application.more » « less
-
null (Ed.)Collaborations that require information sharing and mutual trust between companies, suppliers, and clients can be tough, particularly in the remote era. But blockchain’s distributed ledger — and its use of smart contracts — can simplify the process, creating a common, reliable record of transactions and avoiding costly disputes. In doing so, blockchain changes how deals are made: Partner selection is made simpler, as establishing trust is less important; agreement formation is more important, because protocols are hard to alter once put in place; and execution is made easier, because outcomes can be automated. Blockchain isn’t a magic bullet — it works much better in some situations than others — but it can fundamentally change how collaborations work.more » « less
-
null (Ed.)Data-driven machine learning has become ubiquitous. A marketplace for machine learning models connects data owners and model buyers, and can dramatically facilitate data-driven machine learning applications. In this paper, we take a formal data marketplace perspective and propose the first en D -to-end mod e l m a rketp l ace with diff e rential p r ivacy ( Dealer ) towards answering the following questions: How to formulate data owners' compensation functions and model buyers' price functions? How can the broker determine prices for a set of models to maximize the revenue with arbitrage-free guarantee, and train a set of models with maximum Shapley coverage given a manufacturing budget to remain competitive ? For the former, we propose compensation function for each data owner based on Shapley value and privacy sensitivity, and price function for each model buyer based on Shapley coverage sensitivity and noise sensitivity. Both privacy sensitivity and noise sensitivity are measured by the level of differential privacy. For the latter, we formulate two optimization problems for model pricing and model training, and propose efficient dynamic programming algorithms. Experiment results on the real chess dataset and synthetic datasets justify the design of Dealer and verify the efficiency and effectiveness of the proposed algorithms.more » « less
An official website of the United States government

