skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: ARMADA. II. Further Detections of Inner Companions to Intermediate-mass Binaries with Microarcsecond Astrometry at CHARA and VLTI
Abstract We started a survey with CHARA/MIRC-X and VLTI/GRAVITY to search for low-mass companions orbiting individual components of intermediate-mass binary systems. With the incredible precision of these instruments, we can detect astrometric “wobbles” from companions down to a few tens of microarcseconds. This allows us to detect any previously unseen triple systems in our list of binaries. We present the orbits of 12 companions around early F- to B-type binaries, 9 of which are new detections and 3 of which are first astrometric detections of known radial velocity (RV) companions. The masses of these newly detected components range from 0.45 to 1.3 M ⊙ . Our orbits constrain these systems to a high astrometric precision, with median residuals to the orbital fit of 20–50 μ as in most cases. For seven of these systems we include newly obtained RV data, which help us to identify the system configuration and to solve for masses of individual components in some cases. Although additional RV measurements are needed to break degeneracy in the mutual inclination, we find that the majority of these inner triples are not well aligned with the wide binary orbit. This hints that higher-mass triples are more misaligned compared to solar and lower-mass triples, though a thorough study of survey biases is needed. We show that the ARMADA survey is extremely successful at uncovering previously unseen companions in binaries. This method will be used in upcoming papers to constrain companion demographics in intermediate-mass binary systems down to the planetary-mass regime.  more » « less
Award ID(s):
2034336 2009489
PAR ID:
10411338
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; « less
Date Published:
Journal Name:
The Astronomical Journal
Volume:
164
Issue:
5
ISSN:
0004-6256
Page Range / eLocation ID:
184
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Classical Be stars are possible products of close binary evolution, in which the mass donor becomes a hot, stripped O- or B-type subdwarf (sdO/sdB), and the mass gainer spins up and grows a disk to become a Be star. While several Be+sdO binaries have been identified, dynamical masses and other fundamental parameters are available only for a single Be+sdO system, limiting the confrontation with binary evolution models. In this work, we present direct interferometric detections of the sdO companions of three Be stars—28 Cyg, V2119 Cyg, and 60 Cyg—all of which were previously found in UV spectra. For two of the three Be+sdO systems, we present first orbits and preliminary dynamical masses of the components, revealing that one of them could be the first identified progenitor of a Be/X-ray binary with a neutron star companion. These results provide new sets of fundamental parameters that are crucially needed to establish the evolutionary status and origin of Be stars. 
    more » « less
  2. Abstract More than half of all main-sequence (MS) stars have one or more companions, and many of those with initial masses <8Mare born in hierarchical triples. These systems feature two stars in a close orbit (the inner binary) while a tertiary star orbits them on a wider orbit (the outer binary). In hierarchical triples, three-body dynamics combined with stellar evolution drives interactions and, in many cases, merges the inner binary entirely to create a renovated “post-merger binary” (PMB). By leveraging dynamical simulations and tracking binary interactions, we explore the outcomes of merged triples and investigate whether PMBs preserve signatures of their three-body history. Our findings indicate that in 26%–54% of wide double white dwarf (DWD) binaries (s≳ 100 au), the more massive white dwarf (WD) is a merger product, implying that these DWD binaries were previously triples. Overall, we estimate that 44% ± 14% of observed wide DWDs originated in triple star systems and thereby have rich dynamical histories. We also examine MS+MS and MS+red giant mergers manifesting as blue straggler stars (BSSs). These PMBs have orbital configurations and ages similar to most observed BSS binaries. While the triple+merger formation channel can explain the observed chemical abundances, moderate eccentricities, and companion masses in BSS binaries, it likely only accounts for ∼20%–25% of BSSs. Meanwhile, we predict that the majority of observed single BSSs formed as collisions in triples and harbor long-period (>10 yr) companions. Furthermore, both BSS binaries and DWDs exhibit signatures of WD birth kicks. 
    more » « less
  3. Abstract We present orbits for 24 binaries in the field of open cluster NGC 2516 (∼150 Myr) and 13 binaries in the field of open cluster NGC 2422 (∼130 Myr) using results from a multiyear radial-velocity (RV) survey of the cluster cores. Six of these systems are double-lined spectroscopic binaries. We fit these RV variable systems with orvara , a MCMC-based fitting program that models Keplerian orbits. We use precise stellar parallaxes and proper motions from Gaia EDR3 to determine cluster membership. We impose a barycentric RV prior on all cluster members; this significantly improves our orbital constraints. Two of our systems have periods between five and 15 days, the critical window in which tides efficiently damp orbital eccentricity. These binaries should be included in future analyses of circularization across similarly-aged clusters. We also find a relatively flat distribution of binary mass ratios, consistent with previous work. With the inclusion of TESS light curves for all available targets, we identity target 378–036252 as a new eclipsing binary. We also identify a field star whose secondary has a mass in the brown dwarf range, as well as two cluster members whose RVs suggest the presence of an additional companion. Our orbital fits will help constrain the binary fraction and binary properties across stellar age and across stellar environment. 
    more » « less
  4. ABSTRACT The third data release of Gaia was the first to include orbital solutions assuming non-single stars. Here, we apply the astrometric triage technique of Shahaf et al. to identify binary star systems with companions that are not single main-sequence stars. Gaia’s synthetic photometry of these binaries is used to distinguish between systems likely to have white-dwarf companions and those that may be hierarchical triples. The study uncovered a population of nearly $$3\, 200$$ binaries, characterized by orbital separations on the order of an astronomical unit, in which the faint astrometric companion is probably a white dwarf. This sample increases the number of orbitally solved binary systems of this type by about two orders of magnitude. Remarkably, over 110 of these systems exhibit significant ultraviolet excess flux, confirming this classification and, in some cases, indicating their relatively young cooling ages. We show that the sample is not currently represented in synthetic binary populations, and is not easily reproduced by available binary population synthesis codes. Therefore, it challenges current binary evolution models, offering a unique opportunity to gain insights into the processes governing white-dwarf formation, binary evolution, and mass transfer. 
    more » « less
  5. Abstract We report the results from a pilot study to search for black holes and other dark companions in binary systems using direct imaging with SHARK-VIS and the iLocater pathfinder “Lili” on the Large Binocular Telescope. Starting from known single-lined spectroscopic binaries, we select systems with high mass functions that could host dark companions and whose spectroscopic orbits indicate a projected orbital separation ≥30 mas. For this first exploration, we selected four systems (HD 137909, HD 104438, HD 117044, and HD 176695). In each case, we identify a luminous companion and measure the flux ratio and angular separation. However, two of the systems (HD 104438 and HD 176695) are not consistent with simple binary systems and are most likely hierarchical triples. The observed companions rule out a massive compact object for HD 137909, HD 117044, and HD 176695. HD 104438 requires further study because the identified star cannot be responsible for the RV orbit and is likely a dwarf tertiary companion. The SHARK-VIS observation was taken near pericenter, and a second image near apocenter is needed to discriminate between a closely separated luminous secondary and a compact object. When a luminous companion is found, the combination of the RVs and the single SHARK-VIS observation strongly constrains the orbital inclination and the companion mass. Since a single SHARK-VIS observation has a typical on-source observing time of only ∼10 minutes, this a promising method to efficiently identify non-interacting compact object candidates. 
    more » « less